

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at team@github.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

 [image: logo]

streamhut

Stream and send data, terminal to web and vice versa.

[image: _images/license-MIT-blue.svg]License [https://raw.githubusercontent.com/streamhut/streamhut/master/LICENSE]
[image: _images/streamhut.svg]Build Status [https://travis-ci.org/streamhut/streamhut]
[image: _images/streamhut1.svg]Go Report Card [https://goreportcard.com/report/github.com/streamhut/streamhut]
[image: _images/streamhut2.svg]GoDoc [https://godoc.org/github.com/streamhut/streamhut]

Synopsis

	Stream your terminal to anyone without installing anything.

	Path names map to channels.

	Anyone in the same channel can view what’s streamed.

	Easily self-host your own streamhut server.

Streamhut allows you to stream (pipe) realtime data from your terminal stdout/stderr to a web xterm UI or even to another terminal. It also allow you to quickly share data and files between devices.

As long as you have netcat [https://en.wikipedia.org/wiki/Netcat] which comes pre-installed in most *nix systems than you can use streamhut! If you can’t install netcat, you may also use the streamhut CLI client.

⚠️ Disclaimer: This software is alpha quality and not production ready. Use at your own risk!

Demo

https://streamhut.io

[image: _images/streamhut_demo_1.gif]Demo

Getting Started (without installing anything)

One liner to stream your terminal:

$ exec &> >(nc stream.ht 1337)

The above command pipes stdout and stderr of new bash shell to streamhut.

Stream to a custom channel name:

$ exec &> >(nc stream.ht 1337);echo \#mychannel

Example of streaming tail of file:

terminal 1
$ cat > data.txt

terminal 2
$ tail -F data.txt | nc stream.ht 1337

Stream the current date every second:

$ while true; do date; sleep 1; done | nc stream.ht 1337

Stream output of a program (delay is required to see share url):

$ (sleep 5; htop) | nc stream.ht 1337
waits 5 seconds, and then send contents of program.

Example of piping a program to both stdout and streamhut:

$ (echo -n; sleep 5; htop) | tee >(nc stream.ht 1337)

Don’t have netcat available? Pipe to a file descriptor with an open TCP connection:

$ exec 3<>/dev/tcp/stream.ht/1337 && head -1 <&3 && exec &> >(tee >(cat >&3))

Install

$ go get github.com/streamhut/streamhut

CLI

Example of using streamhut CLI:

Stream to server

Piping commands:

$ htop | streamhut

Add delay to see share url:

$ htop | streamhut -d 5

Open url in browser:

$ htop | streamhut -o

Stream to different server:

$ htop | streamhut -h example.com -p 1337

Stream to custom channel:

$ htop | streamhut -c mychannel

For more options, run streamhut --help

Run your own server:

$ streamhut server

Starting server...
HTTP/WebSocket port: 8080
TCP port: 1337

Run server with SSL/TLS:

$ mkcert localhost

$ sudo streamhut server --tls --tls-cert=localhost.pem --tls-key=localhost-key.pem -p 443

For more options, run streamhut server --help

Connecting to a channel

terminal 1
$ streamhut connect -c mychannel

For more options, run streamhut connect --help

Docker

You can run streamhut as a Docker container:

$ docker pull streamhut/streamhut
$ docker run -e PORT=8080 -e TCP_PORT=1337 -p 8080:8080 -p 1337:1337 --restart unless-stopped streamhut/streamhut:latest

Self-host (docker one-liner)

One-liner to self-host using Docker:

docker run -p 8080:8080 -p 1337:1337 streamhut/streamhut

Test

make test

Development

Start server:

make start

Run migrations:

make migrate

Web App

The web app source code is found on https://github.com/streamhut/web.

FAQ

	Q: How is the stream log data stored?

	A: Currently it’s stored in a local sqlite3 database. You can disable storage with the --no-storage flag, e.g. streamhut server --no-storage.

	Q: What happened to the streamhut NPM module?

	A: The node.js implementation [https://github.com/streamhut/streamhut/tree/nodejs] of streamhut is now deprecated in favor of this Golang implementation.

	Q: Can the same channel be used more than once?

	A: Yes! send #{channel} (ie #mychannel) as the first stream text to use that channel.

Example:

exec &> >(nc stream.ht 1337);echo \#mychannel

	Q: What’s the difference between stream.ht and streamhut.io?

	A: The domain stream.ht is an alias for streamhut.io, meaning you can type stream.ht as the domain for convenience. Other aliases are streamhut.net and streamhut.org.

	Q: What is the difference between exec > >(nc stream.ht 1337) 2>&1 and exec &> >(nc stream.ht 1337)

	A: They are the same in that they both stream stdout and stderr to the server.

License

Released under the Apache 2.0 license.

© Miguel Mota [https://github.com/miguelmota]

streamhut migrations

Getting started

Install dependencies

gem install bundler
bundle install

Set your database environment variables:

POSTGRES_HOST=127.0.0.1
POSTGRES_PORT=5432
POSTGRES_DBNAME=streamhut
POSTGRES_USER=root
POSTGRES_PASS=

Create database

rake db:create

Initialize schema

rake db:migrate

FAQ

	Q: Why are you using a ruby gem in a Go application?

	A: standalone_migrations [https://github.com/thuss/standalone-migrations] is non-rails specific and by far the smoothest tool for database migrations I’ve come across.

pty

Pty is a Go package for using unix pseudo-terminals.

Install

go get github.com/creack/pty

Example

Command

package main

import (
	"github.com/creack/pty"
	"io"
	"os"
	"os/exec"
)

func main() {
	c := exec.Command("grep", "--color=auto", "bar")
	f, err := pty.Start(c)
	if err != nil {
		panic(err)
	}

	go func() {
		f.Write([]byte("foo\n"))
		f.Write([]byte("bar\n"))
		f.Write([]byte("baz\n"))
		f.Write([]byte{4}) // EOT
	}()
	io.Copy(os.Stdout, f)
}

Shell

package main

import (
 "io"
 "log"
 "os"
 "os/exec"
 "os/signal"
 "syscall"

 "github.com/creack/pty"
 "golang.org/x/crypto/ssh/terminal"
)

func test() error {
 // Create arbitrary command.
 c := exec.Command("bash")

 // Start the command with a pty.
 ptmx, err := pty.Start(c)
 if err != nil {
 return err
 }
 // Make sure to close the pty at the end.
 defer func() { _ = ptmx.Close() }() // Best effort.

 // Handle pty size.
 ch := make(chan os.Signal, 1)
 signal.Notify(ch, syscall.SIGWINCH)
 go func() {
 for range ch {
 if err := pty.InheritSize(os.Stdin, ptmx); err != nil {
 log.Printf("error resizing pty: %s", err)
 }
 }
 }()
 ch <- syscall.SIGWINCH // Initial resize.

 // Set stdin in raw mode.
 oldState, err := terminal.MakeRaw(int(os.Stdin.Fd()))
 if err != nil {
 panic(err)
 }
 defer func() { _ = terminal.Restore(int(os.Stdin.Fd()), oldState) }() // Best effort.

 // Copy stdin to the pty and the pty to stdout.
 go func() { _, _ = io.Copy(ptmx, os.Stdin) }()
 _, _ = io.Copy(os.Stdout, ptmx)

 return nil
}

func main() {
 if err := test(); err != nil {
 log.Fatal(err)
 }
}

 The MIT License (MIT)

Copyright (c) 2013 Fatih Arslan

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Archived project. No maintenance.

This project is not maintained anymore and is archived. Feel free to fork and
make your own changes if needed. For more detail read my blog post: Taking an indefinite sabbatical from my projects [https://arslan.io/2018/10/09/taking-an-indefinite-sabbatical-from-my-projects/]

Thanks to everyone for their valuable feedback and contributions.

Color [image: ../../../../_images/color.svg]GoDoc [https://godoc.org/github.com/fatih/color]

Color lets you use colorized outputs in terms of ANSI Escape
Codes [http://en.wikipedia.org/wiki/ANSI_escape_code#Colors] in Go (Golang). It
has support for Windows too! The API can be used in several ways, pick one that
suits you.

[image: ../../../../_images/c1JI0lA.png]Color

Install

go get github.com/fatih/color

Examples

Standard colors

// Print with default helper functions
color.Cyan("Prints text in cyan.")

// A newline will be appended automatically
color.Blue("Prints %s in blue.", "text")

// These are using the default foreground colors
color.Red("We have red")
color.Magenta("And many others ..")

Mix and reuse colors

// Create a new color object
c := color.New(color.FgCyan).Add(color.Underline)
c.Println("Prints cyan text with an underline.")

// Or just add them to New()
d := color.New(color.FgCyan, color.Bold)
d.Printf("This prints bold cyan %s\n", "too!.")

// Mix up foreground and background colors, create new mixes!
red := color.New(color.FgRed)

boldRed := red.Add(color.Bold)
boldRed.Println("This will print text in bold red.")

whiteBackground := red.Add(color.BgWhite)
whiteBackground.Println("Red text with white background.")

Use your own output (io.Writer)

// Use your own io.Writer output
color.New(color.FgBlue).Fprintln(myWriter, "blue color!")

blue := color.New(color.FgBlue)
blue.Fprint(writer, "This will print text in blue.")

Custom print functions (PrintFunc)

// Create a custom print function for convenience
red := color.New(color.FgRed).PrintfFunc()
red("Warning")
red("Error: %s", err)

// Mix up multiple attributes
notice := color.New(color.Bold, color.FgGreen).PrintlnFunc()
notice("Don't forget this...")

Custom fprint functions (FprintFunc)

blue := color.New(FgBlue).FprintfFunc()
blue(myWriter, "important notice: %s", stars)

// Mix up with multiple attributes
success := color.New(color.Bold, color.FgGreen).FprintlnFunc()
success(myWriter, "Don't forget this...")

Insert into noncolor strings (SprintFunc)

// Create SprintXxx functions to mix strings with other non-colorized strings:
yellow := color.New(color.FgYellow).SprintFunc()
red := color.New(color.FgRed).SprintFunc()
fmt.Printf("This is a %s and this is %s.\n", yellow("warning"), red("error"))

info := color.New(color.FgWhite, color.BgGreen).SprintFunc()
fmt.Printf("This %s rocks!\n", info("package"))

// Use helper functions
fmt.Println("This", color.RedString("warning"), "should be not neglected.")
fmt.Printf("%v %v\n", color.GreenString("Info:"), "an important message.")

// Windows supported too! Just don't forget to change the output to color.Output
fmt.Fprintf(color.Output, "Windows support: %s", color.GreenString("PASS"))

Plug into existing code

// Use handy standard colors
color.Set(color.FgYellow)

fmt.Println("Existing text will now be in yellow")
fmt.Printf("This one %s\n", "too")

color.Unset() // Don't forget to unset

// You can mix up parameters
color.Set(color.FgMagenta, color.Bold)
defer color.Unset() // Use it in your function

fmt.Println("All text will now be bold magenta.")

Disable/Enable color

There might be a case where you want to explicitly disable/enable color output. the
go-isatty package will automatically disable color output for non-tty output streams
(for example if the output were piped directly to less)

Color has support to disable/enable colors both globally and for single color
definitions. For example suppose you have a CLI app and a --no-color bool flag. You
can easily disable the color output with:

var flagNoColor = flag.Bool("no-color", false, "Disable color output")

if *flagNoColor {
	color.NoColor = true // disables colorized output
}

It also has support for single color definitions (local). You can
disable/enable color output on the fly:

c := color.New(color.FgCyan)
c.Println("Prints cyan text")

c.DisableColor()
c.Println("This is printed without any color")

c.EnableColor()
c.Println("This prints again cyan...")

Todo

	Save/Return previous values

	Evaluate fmt.Formatter interface

Credits

	Fatih Arslan [https://github.com/fatih]

	Windows support via @mattn: colorable [https://github.com/mattn/go-colorable]

License

The MIT License (MIT) - see LICENSE.md [https://github.com/fatih/color/blob/master/LICENSE] for more details

gorilla/mux

[image: ../../../../_images/mux.svg]GoDoc [https://godoc.org/github.com/gorilla/mux]
[image: ../../../../_images/mux1.svg]CircleCI [https://circleci.com/gh/gorilla/mux]
[image: ../../../../_images/badge.svg]Sourcegraph [https://sourcegraph.com/github.com/gorilla/mux?badge]

[image: ../../../../_images/gorilla-icon-64.png]Gorilla Logo

https://www.gorillatoolkit.org/pkg/mux

Package gorilla/mux implements a request router and dispatcher for matching incoming requests to
their respective handler.

The name mux stands for “HTTP request multiplexer”. Like the standard http.ServeMux, mux.Router matches incoming requests against a list of registered routes and calls a handler for the route that matches the URL or other conditions. The main features are:

	It implements the http.Handler interface so it is compatible with the standard http.ServeMux.

	Requests can be matched based on URL host, path, path prefix, schemes, header and query values, HTTP methods or using custom matchers.

	URL hosts, paths and query values can have variables with an optional regular expression.

	Registered URLs can be built, or “reversed”, which helps maintaining references to resources.

	Routes can be used as subrouters: nested routes are only tested if the parent route matches. This is useful to define groups of routes that share common conditions like a host, a path prefix or other repeated attributes. As a bonus, this optimizes request matching.

	Install

	Examples

	Matching Routes

	Static Files

	Serving Single Page Applications (e.g. React, Vue, Ember.js, etc.)

	Registered URLs

	Walking Routes

	Graceful Shutdown

	Middleware

	Handling CORS Requests

	Testing Handlers

	Full Example

Install

With a correctly configured [https://golang.org/doc/install#testing] Go toolchain:

go get -u github.com/gorilla/mux

Examples

Let’s start registering a couple of URL paths and handlers:

func main() {
 r := mux.NewRouter()
 r.HandleFunc("/", HomeHandler)
 r.HandleFunc("/products", ProductsHandler)
 r.HandleFunc("/articles", ArticlesHandler)
 http.Handle("/", r)
}

Here we register three routes mapping URL paths to handlers. This is equivalent to how http.HandleFunc() works: if an incoming request URL matches one of the paths, the corresponding handler is called passing (http.ResponseWriter, *http.Request) as parameters.

Paths can have variables. They are defined using the format {name} or {name:pattern}. If a regular expression pattern is not defined, the matched variable will be anything until the next slash. For example:

r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)

The names are used to create a map of route variables which can be retrieved calling mux.Vars():

func ArticlesCategoryHandler(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "Category: %v\n", vars["category"])
}

And this is all you need to know about the basic usage. More advanced options are explained below.

Matching Routes

Routes can also be restricted to a domain or subdomain. Just define a host pattern to be matched. They can also have variables:

r := mux.NewRouter()
// Only matches if domain is "www.example.com".
r.Host("www.example.com")
// Matches a dynamic subdomain.
r.Host("{subdomain:[a-z]+}.example.com")

There are several other matchers that can be added. To match path prefixes:

r.PathPrefix("/products/")

…or HTTP methods:

r.Methods("GET", "POST")

…or URL schemes:

r.Schemes("https")

…or header values:

r.Headers("X-Requested-With", "XMLHttpRequest")

…or query values:

r.Queries("key", "value")

…or to use a custom matcher function:

r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool {
 return r.ProtoMajor == 0
})

…and finally, it is possible to combine several matchers in a single route:

r.HandleFunc("/products", ProductsHandler).
 Host("www.example.com").
 Methods("GET").
 Schemes("http")

Routes are tested in the order they were added to the router. If two routes match, the first one wins:

r := mux.NewRouter()
r.HandleFunc("/specific", specificHandler)
r.PathPrefix("/").Handler(catchAllHandler)

Setting the same matching conditions again and again can be boring, so we have a way to group several routes that share the same requirements. We call it “subrouting”.

For example, let’s say we have several URLs that should only match when the host is www.example.com. Create a route for that host and get a “subrouter” from it:

r := mux.NewRouter()
s := r.Host("www.example.com").Subrouter()

Then register routes in the subrouter:

s.HandleFunc("/products/", ProductsHandler)
s.HandleFunc("/products/{key}", ProductHandler)
s.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)

The three URL paths we registered above will only be tested if the domain is www.example.com, because the subrouter is tested first. This is not only convenient, but also optimizes request matching. You can create subrouters combining any attribute matchers accepted by a route.

Subrouters can be used to create domain or path “namespaces”: you define subrouters in a central place and then parts of the app can register its paths relatively to a given subrouter.

There’s one more thing about subroutes. When a subrouter has a path prefix, the inner routes use it as base for their paths:

r := mux.NewRouter()
s := r.PathPrefix("/products").Subrouter()
// "/products/"
s.HandleFunc("/", ProductsHandler)
// "/products/{key}/"
s.HandleFunc("/{key}/", ProductHandler)
// "/products/{key}/details"
s.HandleFunc("/{key}/details", ProductDetailsHandler)

Static Files

Note that the path provided to PathPrefix() represents a “wildcard”: calling
PathPrefix("/static/").Handler(...) means that the handler will be passed any
request that matches “/static/*”. This makes it easy to serve static files with mux:

func main() {
 var dir string

 flag.StringVar(&dir, "dir", ".", "the directory to serve files from. Defaults to the current dir")
 flag.Parse()
 r := mux.NewRouter()

 // This will serve files under http://localhost:8000/static/<filename>
 r.PathPrefix("/static/").Handler(http.StripPrefix("/static/", http.FileServer(http.Dir(dir))))

 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }

 log.Fatal(srv.ListenAndServe())
}

Serving Single Page Applications

Most of the time it makes sense to serve your SPA on a separate web server from your API,
but sometimes it’s desirable to serve them both from one place. It’s possible to write a simple
handler for serving your SPA (for use with React Router’s BrowserRouter [https://reacttraining.com/react-router/web/api/BrowserRouter] for example), and leverage
mux’s powerful routing for your API endpoints.

package main

import (
	"encoding/json"
	"log"
	"net/http"
	"os"
	"path/filepath"
	"time"

	"github.com/gorilla/mux"
)

// spaHandler implements the http.Handler interface, so we can use it
// to respond to HTTP requests. The path to the static directory and
// path to the index file within that static directory are used to
// serve the SPA in the given static directory.
type spaHandler struct {
	staticPath string
	indexPath string
}

// ServeHTTP inspects the URL path to locate a file within the static dir
// on the SPA handler. If a file is found, it will be served. If not, the
// file located at the index path on the SPA handler will be served. This
// is suitable behavior for serving an SPA (single page application).
func (h spaHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 // get the absolute path to prevent directory traversal
	path, err := filepath.Abs(r.URL.Path)
	if err != nil {
 // if we failed to get the absolute path respond with a 400 bad request
 // and stop
		http.Error(w, err.Error(), http.StatusBadRequest)
		return
	}

 // prepend the path with the path to the static directory
	path = filepath.Join(h.staticPath, path)

 // check whether a file exists at the given path
	_, err = os.Stat(path)
	if os.IsNotExist(err) {
		// file does not exist, serve index.html
		http.ServeFile(w, r, filepath.Join(h.staticPath, h.indexPath))
		return
	} else if err != nil {
 // if we got an error (that wasn't that the file doesn't exist) stating the
 // file, return a 500 internal server error and stop
		http.Error(w, err.Error(), http.StatusInternalServerError)
		return
	}

 // otherwise, use http.FileServer to serve the static dir
	http.FileServer(http.Dir(h.staticPath)).ServeHTTP(w, r)
}

func main() {
	router := mux.NewRouter()

	router.HandleFunc("/api/health", func(w http.ResponseWriter, r *http.Request) {
		// an example API handler
		json.NewEncoder(w).Encode(map[string]bool{"ok": true})
	})

	spa := spaHandler{staticPath: "build", indexPath: "index.html"}
	router.PathPrefix("/").Handler(spa)

	srv := &http.Server{
		Handler: router,
		Addr: "127.0.0.1:8000",
		// Good practice: enforce timeouts for servers you create!
		WriteTimeout: 15 * time.Second,
		ReadTimeout: 15 * time.Second,
	}

	log.Fatal(srv.ListenAndServe())
}

Registered URLs

Now let’s see how to build registered URLs.

Routes can be named. All routes that define a name can have their URLs built, or “reversed”. We define a name calling Name() on a route. For example:

r := mux.NewRouter()
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
 Name("article")

To build a URL, get the route and call the URL() method, passing a sequence of key/value pairs for the route variables. For the previous route, we would do:

url, err := r.Get("article").URL("category", "technology", "id", "42")

…and the result will be a url.URL with the following path:

"/articles/technology/42"

This also works for host and query value variables:

r := mux.NewRouter()
r.Host("{subdomain}.example.com").
 Path("/articles/{category}/{id:[0-9]+}").
 Queries("filter", "{filter}").
 HandlerFunc(ArticleHandler).
 Name("article")

// url.String() will be "http://news.example.com/articles/technology/42?filter=gorilla"
url, err := r.Get("article").URL("subdomain", "news",
 "category", "technology",
 "id", "42",
 "filter", "gorilla")

All variables defined in the route are required, and their values must conform to the corresponding patterns. These requirements guarantee that a generated URL will always match a registered route – the only exception is for explicitly defined “build-only” routes which never match.

Regex support also exists for matching Headers within a route. For example, we could do:

r.HeadersRegexp("Content-Type", "application/(text|json)")

…and the route will match both requests with a Content-Type of application/json as well as application/text

There’s also a way to build only the URL host or path for a route: use the methods URLHost() or URLPath() instead. For the previous route, we would do:

// "http://news.example.com/"
host, err := r.Get("article").URLHost("subdomain", "news")

// "/articles/technology/42"
path, err := r.Get("article").URLPath("category", "technology", "id", "42")

And if you use subrouters, host and path defined separately can be built as well:

r := mux.NewRouter()
s := r.Host("{subdomain}.example.com").Subrouter()
s.Path("/articles/{category}/{id:[0-9]+}").
 HandlerFunc(ArticleHandler).
 Name("article")

// "http://news.example.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
 "category", "technology",
 "id", "42")

Walking Routes

The Walk function on mux.Router can be used to visit all of the routes that are registered on a router. For example,
the following prints all of the registered routes:

package main

import (
	"fmt"
	"net/http"
	"strings"

	"github.com/gorilla/mux"
)

func handler(w http.ResponseWriter, r *http.Request) {
	return
}

func main() {
	r := mux.NewRouter()
	r.HandleFunc("/", handler)
	r.HandleFunc("/products", handler).Methods("POST")
	r.HandleFunc("/articles", handler).Methods("GET")
	r.HandleFunc("/articles/{id}", handler).Methods("GET", "PUT")
	r.HandleFunc("/authors", handler).Queries("surname", "{surname}")
	err := r.Walk(func(route *mux.Route, router *mux.Router, ancestors []*mux.Route) error {
		pathTemplate, err := route.GetPathTemplate()
		if err == nil {
			fmt.Println("ROUTE:", pathTemplate)
		}
		pathRegexp, err := route.GetPathRegexp()
		if err == nil {
			fmt.Println("Path regexp:", pathRegexp)
		}
		queriesTemplates, err := route.GetQueriesTemplates()
		if err == nil {
			fmt.Println("Queries templates:", strings.Join(queriesTemplates, ","))
		}
		queriesRegexps, err := route.GetQueriesRegexp()
		if err == nil {
			fmt.Println("Queries regexps:", strings.Join(queriesRegexps, ","))
		}
		methods, err := route.GetMethods()
		if err == nil {
			fmt.Println("Methods:", strings.Join(methods, ","))
		}
		fmt.Println()
		return nil
	})

	if err != nil {
		fmt.Println(err)
	}

	http.Handle("/", r)
}

Graceful Shutdown

Go 1.8 introduced the ability to gracefully shutdown [https://golang.org/doc/go1.8#http_shutdown] a *http.Server. Here’s how to do that alongside mux:

package main

import (
 "context"
 "flag"
 "log"
 "net/http"
 "os"
 "os/signal"
 "time"

 "github.com/gorilla/mux"
)

func main() {
 var wait time.Duration
 flag.DurationVar(&wait, "graceful-timeout", time.Second * 15, "the duration for which the server gracefully wait for existing connections to finish - e.g. 15s or 1m")
 flag.Parse()

 r := mux.NewRouter()
 // Add your routes as needed

 srv := &http.Server{
 Addr: "0.0.0.0:8080",
 // Good practice to set timeouts to avoid Slowloris attacks.
 WriteTimeout: time.Second * 15,
 ReadTimeout: time.Second * 15,
 IdleTimeout: time.Second * 60,
 Handler: r, // Pass our instance of gorilla/mux in.
 }

 // Run our server in a goroutine so that it doesn't block.
 go func() {
 if err := srv.ListenAndServe(); err != nil {
 log.Println(err)
 }
 }()

 c := make(chan os.Signal, 1)
 // We'll accept graceful shutdowns when quit via SIGINT (Ctrl+C)
 // SIGKILL, SIGQUIT or SIGTERM (Ctrl+/) will not be caught.
 signal.Notify(c, os.Interrupt)

 // Block until we receive our signal.
 <-c

 // Create a deadline to wait for.
 ctx, cancel := context.WithTimeout(context.Background(), wait)
 defer cancel()
 // Doesn't block if no connections, but will otherwise wait
 // until the timeout deadline.
 srv.Shutdown(ctx)
 // Optionally, you could run srv.Shutdown in a goroutine and block on
 // <-ctx.Done() if your application should wait for other services
 // to finalize based on context cancellation.
 log.Println("shutting down")
 os.Exit(0)
}

Middleware

Mux supports the addition of middlewares to a Router [https://godoc.org/github.com/gorilla/mux#Router], which are executed in the order they are added if a match is found, including its subrouters.
Middlewares are (typically) small pieces of code which take one request, do something with it, and pass it down to another middleware or the final handler. Some common use cases for middleware are request logging, header manipulation, or ResponseWriter hijacking.

Mux middlewares are defined using the de facto standard type:

type MiddlewareFunc func(http.Handler) http.Handler

Typically, the returned handler is a closure which does something with the http.ResponseWriter and http.Request passed to it, and then calls the handler passed as parameter to the MiddlewareFunc. This takes advantage of closures being able access variables from the context where they are created, while retaining the signature enforced by the receivers.

A very basic middleware which logs the URI of the request being handled could be written as:

func loggingMiddleware(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 // Do stuff here
 log.Println(r.RequestURI)
 // Call the next handler, which can be another middleware in the chain, or the final handler.
 next.ServeHTTP(w, r)
 })
}

Middlewares can be added to a router using Router.Use():

r := mux.NewRouter()
r.HandleFunc("/", handler)
r.Use(loggingMiddleware)

A more complex authentication middleware, which maps session token to users, could be written as:

// Define our struct
type authenticationMiddleware struct {
	tokenUsers map[string]string
}

// Initialize it somewhere
func (amw *authenticationMiddleware) Populate() {
	amw.tokenUsers["00000000"] = "user0"
	amw.tokenUsers["aaaaaaaa"] = "userA"
	amw.tokenUsers["05f717e5"] = "randomUser"
	amw.tokenUsers["deadbeef"] = "user0"
}

// Middleware function, which will be called for each request
func (amw *authenticationMiddleware) Middleware(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 token := r.Header.Get("X-Session-Token")

 if user, found := amw.tokenUsers[token]; found {
 	// We found the token in our map
 	log.Printf("Authenticated user %s\n", user)
 	// Pass down the request to the next middleware (or final handler)
 	next.ServeHTTP(w, r)
 } else {
 	// Write an error and stop the handler chain
 	http.Error(w, "Forbidden", http.StatusForbidden)
 }
 })
}

r := mux.NewRouter()
r.HandleFunc("/", handler)

amw := authenticationMiddleware{}
amw.Populate()

r.Use(amw.Middleware)

Note: The handler chain will be stopped if your middleware doesn’t call next.ServeHTTP() with the corresponding parameters. This can be used to abort a request if the middleware writer wants to. Middlewares should write to ResponseWriter if they are going to terminate the request, and they should not write to ResponseWriter if they are not going to terminate it.

Handling CORS Requests

CORSMethodMiddleware [https://godoc.org/github.com/gorilla/mux#CORSMethodMiddleware] intends to make it easier to strictly set the Access-Control-Allow-Methods response header.

	You will still need to use your own CORS handler to set the other CORS headers such as Access-Control-Allow-Origin

	The middleware will set the Access-Control-Allow-Methods header to all the method matchers (e.g. r.Methods(http.MethodGet, http.MethodPut, http.MethodOptions) -> Access-Control-Allow-Methods: GET,PUT,OPTIONS) on a route

	If you do not specify any methods, then:

Important: there must be an OPTIONS method matcher for the middleware to set the headers.

Here is an example of using CORSMethodMiddleware along with a custom OPTIONS handler to set all the required CORS headers:

package main

import (
	"net/http"
	"github.com/gorilla/mux"
)

func main() {
 r := mux.NewRouter()

 // IMPORTANT: you must specify an OPTIONS method matcher for the middleware to set CORS headers
 r.HandleFunc("/foo", fooHandler).Methods(http.MethodGet, http.MethodPut, http.MethodPatch, http.MethodOptions)
 r.Use(mux.CORSMethodMiddleware(r))

 http.ListenAndServe(":8080", r)
}

func fooHandler(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Access-Control-Allow-Origin", "*")
 if r.Method == http.MethodOptions {
 return
 }

 w.Write([]byte("foo"))
}

And an request to /foo using something like:

curl localhost:8080/foo -v

Would look like:

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> GET /foo HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.59.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Access-Control-Allow-Methods: GET,PUT,PATCH,OPTIONS
< Access-Control-Allow-Origin: *
< Date: Fri, 28 Jun 2019 20:13:30 GMT
< Content-Length: 3
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact
foo

Testing Handlers

Testing handlers in a Go web application is straightforward, and mux doesn’t complicate this any further. Given two files: endpoints.go and endpoints_test.go, here’s how we’d test an application using mux.

First, our simple HTTP handler:

// endpoints.go
package main

func HealthCheckHandler(w http.ResponseWriter, r *http.Request) {
 // A very simple health check.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusOK)

 // In the future we could report back on the status of our DB, or our cache
 // (e.g. Redis) by performing a simple PING, and include them in the response.
 io.WriteString(w, `{"alive": true}`)
}

func main() {
 r := mux.NewRouter()
 r.HandleFunc("/health", HealthCheckHandler)

 log.Fatal(http.ListenAndServe("localhost:8080", r))
}

Our test code:

// endpoints_test.go
package main

import (
 "net/http"
 "net/http/httptest"
 "testing"
)

func TestHealthCheckHandler(t *testing.T) {
 // Create a request to pass to our handler. We don't have any query parameters for now, so we'll
 // pass 'nil' as the third parameter.
 req, err := http.NewRequest("GET", "/health", nil)
 if err != nil {
 t.Fatal(err)
 }

 // We create a ResponseRecorder (which satisfies http.ResponseWriter) to record the response.
 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(HealthCheckHandler)

 // Our handlers satisfy http.Handler, so we can call their ServeHTTP method
 // directly and pass in our Request and ResponseRecorder.
 handler.ServeHTTP(rr, req)

 // Check the status code is what we expect.
 if status := rr.Code; status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v",
 status, http.StatusOK)
 }

 // Check the response body is what we expect.
 expected := `{"alive": true}`
 if rr.Body.String() != expected {
 t.Errorf("handler returned unexpected body: got %v want %v",
 rr.Body.String(), expected)
 }
}

In the case that our routes have variables, we can pass those in the request. We could write
table-driven tests [https://dave.cheney.net/2013/06/09/writing-table-driven-tests-in-go] to test multiple
possible route variables as needed.

// endpoints.go
func main() {
 r := mux.NewRouter()
 // A route with a route variable:
 r.HandleFunc("/metrics/{type}", MetricsHandler)

 log.Fatal(http.ListenAndServe("localhost:8080", r))
}

Our test file, with a table-driven test of routeVariables:

// endpoints_test.go
func TestMetricsHandler(t *testing.T) {
 tt := []struct{
 routeVariable string
 shouldPass bool
 }{
 {"goroutines", true},
 {"heap", true},
 {"counters", true},
 {"queries", true},
 {"adhadaeqm3k", false},
 }

 for _, tc := range tt {
 path := fmt.Sprintf("/metrics/%s", tc.routeVariable)
 req, err := http.NewRequest("GET", path, nil)
 if err != nil {
 t.Fatal(err)
 }

 rr := httptest.NewRecorder()
	
	// Need to create a router that we can pass the request through so that the vars will be added to the context
	router := mux.NewRouter()
 router.HandleFunc("/metrics/{type}", MetricsHandler)
 router.ServeHTTP(rr, req)

 // In this case, our MetricsHandler returns a non-200 response
 // for a route variable it doesn't know about.
 if rr.Code == http.StatusOK && !tc.shouldPass {
 t.Errorf("handler should have failed on routeVariable %s: got %v want %v",
 tc.routeVariable, rr.Code, http.StatusOK)
 }
 }
}

Full Example

Here’s a complete, runnable example of a small mux based server:

package main

import (
 "net/http"
 "log"
 "github.com/gorilla/mux"
)

func YourHandler(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Gorilla!\n"))
}

func main() {
 r := mux.NewRouter()
 // Routes consist of a path and a handler function.
 r.HandleFunc("/", YourHandler)

 // Bind to a port and pass our router in
 log.Fatal(http.ListenAndServe(":8000", r))
}

License

BSD licensed. See the LICENSE file for details.

Gorilla WebSocket

[image: ../../../../_images/websocket.svg]GoDoc [https://godoc.org/github.com/gorilla/websocket]
[image: ../../../../_images/websocket1.svg]CircleCI [https://circleci.com/gh/gorilla/websocket]

Gorilla WebSocket is a Go [http://golang.org/] implementation of the
WebSocket [http://www.rfc-editor.org/rfc/rfc6455.txt] protocol.

Documentation

	API Reference [https://pkg.go.dev/github.com/gorilla/websocket?tab=doc]

	Chat example [https://github.com/gorilla/websocket/tree/master/examples/chat]

	Command example [https://github.com/gorilla/websocket/tree/master/examples/command]

	Client and server example [https://github.com/gorilla/websocket/tree/master/examples/echo]

	File watch example [https://github.com/gorilla/websocket/tree/master/examples/filewatch]

Status

The Gorilla WebSocket package provides a complete and tested implementation of
the WebSocket [http://www.rfc-editor.org/rfc/rfc6455.txt] protocol. The
package API is stable.

Installation

go get github.com/gorilla/websocket

Protocol Compliance

The Gorilla WebSocket package passes the server tests in the Autobahn Test
Suite [https://github.com/crossbario/autobahn-testsuite] using the application in the examples/autobahn
subdirectory [https://github.com/gorilla/websocket/tree/master/examples/autobahn].

Gorilla WebSocket compared with other packages

	
	github.com/gorilla
	golang.org/x/net

	RFC 6455 Features

	Passes Autobahn Test Suite	Yes	No

	Receive fragmented message	Yes	No, see note 1

 mousetrap

mousetrap

mousetrap is a tiny library that answers a single question.

On a Windows machine, was the process invoked by someone double clicking on
the executable file while browsing in explorer?

Motivation

Windows developers unfamiliar with command line tools will often “double-click”
the executable for a tool. Because most CLI tools print the help and then exit
when invoked without arguments, this is often very frustrating for those users.

mousetrap provides a way to detect these invocations so that you can provide
more helpful behavior and instructions on how to run the CLI tool. To see what
this looks like, both from an organizational and a technical perspective, see
https://inconshreveable.com/09-09-2014/sweat-the-small-stuff/

The interface

The library exposes a single interface:

func StartedByExplorer() (bool)

 Windows Terminal Sequences

Windows Terminal Sequences

This library allow for enabling Windows terminal color support for Go.

See Console Virtual Terminal Sequences [https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences] for details.

Usage

import (
	"syscall"
	
	sequences "github.com/konsorten/go-windows-terminal-sequences"
)

func main() {
	sequences.EnableVirtualTerminalProcessing(syscall.Stdout, true)
}

Authors

The tool is sponsored by the marvin + konsorten GmbH [http://www.konsorten.de].

We thank all the authors who provided code to this library:

	Felix Kollmann

	Nicolas Perraut

	@dirty49374

License

(The MIT License)

Copyright (c) 2018 marvin + konsorten GmbH (open-source@konsorten.de)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ‘Software’), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 <no title>

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright 2018 Kris Nova

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 lolgopher

lolgopher

 go-colorable

go-colorable

[image: ../../../../_images/go-colorable.svg]Godoc Reference [http://godoc.org/github.com/mattn/go-colorable]
[image: ../../../../_images/go-colorable1.svg]Build Status [https://travis-ci.org/mattn/go-colorable]
[image: ../../../../_images/badge1.svg]Coverage Status [https://coveralls.io/github/mattn/go-colorable?branch=master]
[image: ../../../../_images/go-colorable2.svg]Go Report Card [https://goreportcard.com/report/mattn/go-colorable]

Colorable writer for windows.

For example, most of logger packages doesn’t show colors on windows. (I know we can do it with ansicon. But I don’t want.)
This package is possible to handle escape sequence for ansi color on windows.

Too Bad!

[image: ../../../../_images/bad.png]

So Good!

[image: ../../../../_images/good.png]

Usage

logrus.SetFormatter(&logrus.TextFormatter{ForceColors: true})
logrus.SetOutput(colorable.NewColorableStdout())

logrus.Info("succeeded")
logrus.Warn("not correct")
logrus.Error("something error")
logrus.Fatal("panic")

You can compile above code on non-windows OSs.

Installation

$ go get github.com/mattn/go-colorable

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

 go-isatty

go-isatty

[image: ../../../../_images/go-isatty.svg]Godoc Reference [http://godoc.org/github.com/mattn/go-isatty]
[image: ../../../../_images/go-isatty1.svg]Build Status [https://travis-ci.org/mattn/go-isatty]
[image: ../../../../_images/badge2.svg]Coverage Status [https://coveralls.io/github/mattn/go-isatty?branch=master]
[image: ../../../../_images/go-isatty2.svg]Go Report Card [https://goreportcard.com/report/mattn/go-isatty]

isatty for golang

Usage

package main

import (
	"fmt"
	"github.com/mattn/go-isatty"
	"os"
)

func main() {
	if isatty.IsTerminal(os.Stdout.Fd()) {
		fmt.Println("Is Terminal")
	} else if isatty.IsCygwinTerminal(os.Stdout.Fd()) {
		fmt.Println("Is Cygwin/MSYS2 Terminal")
	} else {
		fmt.Println("Is Not Terminal")
	}
}

Installation

$ go get github.com/mattn/go-isatty

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

Thanks

	k-takata: base idea for IsCygwinTerminal

https://github.com/k-takata/go-iscygpty

 go-sqlite3

go-sqlite3

[image: ../../../../_images/go-sqlite3.svg]GoDoc Reference [http://godoc.org/github.com/mattn/go-sqlite3]
[image: ../../../../_images/go-sqlite31.svg]Build Status [https://travis-ci.org/mattn/go-sqlite3]
[image: ../../../../_images/badge3.svg]Financial Contributors on Open Collective [https://opencollective.com/mattn-go-sqlite3]
[image: ../../../../_images/badge4.svg]Coverage Status [https://coveralls.io/r/mattn/go-sqlite3?branch=master]
[image: ../../../../_images/go-sqlite32.svg]Go Report Card [https://goreportcard.com/report/github.com/mattn/go-sqlite3]

Latest stable version is v1.14 or later not v2.

~~NOTE: The increase to v2 was an accident. There were no major changes or features.~~

Description

sqlite3 driver conforming to the built-in database/sql interface

Supported Golang version: See .travis.yml

This package follows the official Golang Release Policy. [https://golang.org/doc/devel/release.html#policy]

Overview

	go-sqlite3

	Description

	Overview

	Installation

	API Reference

	Connection String

	DSN Examples

	Features

	Usage

	Feature / Extension List

	Compilation

	Android

	ARM

	Cross Compile

	Google Cloud Platform

	Linux

	Alpine

	Fedora

	Ubuntu

	Mac OSX

	Windows

	Errors

	User Authentication

	Compile

	Usage

	Create protected database

	Password Encoding

	Available Encoders

	Restrictions

	Support

	User Management

	SQL

	Examples

	*SQLiteConn

	Attached database

	Extensions

	Spatialite

	FAQ

	License

	Author

Installation

This package can be installed with the go get command:

go get github.com/mattn/go-sqlite3

go-sqlite3 is cgo package.
If you want to build your app using go-sqlite3, you need gcc.
However, after you have built and installed go-sqlite3 with go install github.com/mattn/go-sqlite3 (which requires gcc), you can build your app without relying on gcc in future.

Important: because this is a CGO enabled package you are required to set the environment variable CGO_ENABLED=1 and have a gcc compile present within your path.

API Reference

API documentation can be found here: http://godoc.org/github.com/mattn/go-sqlite3

Examples can be found under the examples directory

Connection String

When creating a new SQLite database or connection to an existing one, with the file name additional options can be given.
This is also known as a DSN string. (Data Source Name).

Options are append after the filename of the SQLite database.
The database filename and options are seperated by an ? (Question Mark).
Options should be URL-encoded (see url.QueryEscape [https://golang.org/pkg/net/url/#QueryEscape]).

This also applies when using an in-memory database instead of a file.

Options can be given using the following format: KEYWORD=VALUE and multiple options can be combined with the & ampersand.

This library supports dsn options of SQLite itself and provides additional options.

Boolean values can be one of:

	0 no false off

	1 yes true on

Name	Key	Value(s)	Description
——	—–	———-	————-
UA - Create	_auth	-	Create User Authentication, for more information see User Authentication
UA - Username	_auth_user	string	Username for User Authentication, for more information see User Authentication
UA - Password	_auth_pass	string	Password for User Authentication, for more information see User Authentication
UA - Crypt	_auth_crypt	SHA1	
	SSHA1
	SHA256
	SSHA256
	SHA384
	SSHA384
	SHA512
	SSHA512

 | Password encoder to use for User Authentication, for more information see User Authentication |
| UA - Salt | _auth_salt | string | Salt to use if the configure password encoder requires a salt, for User Authentication, for more information see User Authentication |
| Auto Vacuum | _auto_vacuum | _vacuum | 	0 | none
	1 | full
	2 | incremental

 | For more information see PRAGMA auto_vacuum [https://www.sqlite.org/pragma.html#pragma_auto_vacuum] |
Busy Timeout	_busy_timeout	_timeout	int	Specify value for sqlite3_busy_timeout. For more information see PRAGMA busy_timeout [https://www.sqlite.org/pragma.html#pragma_busy_timeout]
Case Sensitive LIKE	_case_sensitive_like	_cslike	boolean	For more information see PRAGMA case_sensitive_like [https://www.sqlite.org/pragma.html#pragma_case_sensitive_like]
Defer Foreign Keys	_defer_foreign_keys	_defer_fk	boolean	For more information see PRAGMA defer_foreign_keys [https://www.sqlite.org/pragma.html#pragma_defer_foreign_keys]
Foreign Keys	_foreign_keys	_fk	boolean	For more information see PRAGMA foreign_keys [https://www.sqlite.org/pragma.html#pragma_foreign_keys]
Ignore CHECK Constraints	_ignore_check_constraints	boolean	For more information see PRAGMA ignore_check_constraints [https://www.sqlite.org/pragma.html#pragma_ignore_check_constraints]	
Immutable	immutable	boolean	For more information see Immutable [https://www.sqlite.org/c3ref/open.html]	
Journal Mode	_journal_mode	_journal	DELETE	
	TRUNCATE
	PERSIST
	MEMORY
	WAL
	OFF

 | For more information see PRAGMA journal_mode [https://www.sqlite.org/pragma.html#pragma_journal_mode] |
| Locking Mode | _locking_mode | _locking | 	NORMAL
	EXCLUSIVE

 | For more information see PRAGMA locking_mode [https://www.sqlite.org/pragma.html#pragma_locking_mode] |
| Mode | mode | 	ro
	rw
	rwc
	memory

 | Access Mode of the database. For more information see SQLite Open [https://www.sqlite.org/c3ref/open.html] |
| Mutex Locking | _mutex | 	no
	full

 | Specify mutex mode. |
Query Only	_query_only	boolean	For more information see PRAGMA query_only [https://www.sqlite.org/pragma.html#pragma_query_only]	
Recursive Triggers	_recursive_triggers	_rt	boolean	For more information see PRAGMA recursive_triggers [https://www.sqlite.org/pragma.html#pragma_recursive_triggers]
Secure Delete	_secure_delete	boolean	FAST	For more information see PRAGMA secure_delete [https://www.sqlite.org/pragma.html#pragma_secure_delete]
Shared-Cache Mode	cache	shared		
	private

 | Set cache mode for more information see sqlite.org [https://www.sqlite.org/sharedcache.html] |
| Synchronous | _synchronous | _sync | 	0 | OFF
	1 | NORMAL
	2 | FULL
	3 | EXTRA

 | For more information see PRAGMA synchronous [https://www.sqlite.org/pragma.html#pragma_synchronous] |
| Time Zone Location | _loc | auto | Specify location of time format. |
| Transaction Lock | _txlock | 	immediate
	deferred
	exclusive

 | Specify locking behavior for transactions. |
| Writable Schema | _writable_schema | Boolean | When this pragma is on, the SQLITE_MASTER tables in which database can be changed using ordinary UPDATE, INSERT, and DELETE statements. Warning: misuse of this pragma can easily result in a corrupt database file. |

DSN Examples

file:test.db?cache=shared&mode=memory

Features

This package allows additional configuration of features available within SQLite3 to be enabled or disabled by golang build constraints also known as build tags.

Click here for more information about build tags / constraints. [https://golang.org/pkg/go/build/#hdr-Build_Constraints]

Usage

If you wish to build this library with additional extensions / features.
Use the following command.

go build --tags "<FEATURE>"

For available features see the extension list.
When using multiple build tags, all the different tags should be space delimted.

Example:

go build --tags "icu json1 fts5 secure_delete"

Feature / Extension List

Extension	Build Tag	Description
———–	———–	————-
Additional Statistics	sqlite_stat4	This option adds additional logic to the ANALYZE command and to the query planner that can help SQLite to chose a better query plan under certain situations. The ANALYZE command is enhanced to collect histogram data from all columns of every index and store that data in the sqlite_stat4 table.The query planner will then use the histogram data to help it make better index choices. The downside of this compile-time option is that it violates the query planner stability guarantee making it more difficult to ensure consistent performance in mass-produced applications.SQLITE_ENABLE_STAT4 is an enhancement of SQLITE_ENABLE_STAT3. STAT3 only recorded histogram data for the left-most column of each index whereas the STAT4 enhancement records histogram data from all columns of each index.The SQLITE_ENABLE_STAT3 compile-time option is a no-op and is ignored if the SQLITE_ENABLE_STAT4 compile-time option is used
Allow URI Authority	sqlite_allow_uri_authority	URI filenames normally throws an error if the authority section is not either empty or “localhost”.However, if SQLite is compiled with the SQLITE_ALLOW_URI_AUTHORITY compile-time option, then the URI is converted into a Uniform Naming Convention (UNC) filename and passed down to the underlying operating system that way
App Armor	sqlite_app_armor	When defined, this C-preprocessor macro activates extra code that attempts to detect misuse of the SQLite API, such as passing in NULL pointers to required parameters or using objects after they have been destroyed. App Armor is not available under Windows.
Disable Load Extensions	sqlite_omit_load_extension	Loading of external extensions is enabled by default.To disable extension loading add the build tag sqlite_omit_load_extension.
Foreign Keys	sqlite_foreign_keys	This macro determines whether enforcement of foreign key constraints is enabled or disabled by default for new database connections.Each database connection can always turn enforcement of foreign key constraints on and off and run-time using the foreign_keys pragma.Enforcement of foreign key constraints is normally off by default, but if this compile-time parameter is set to 1, enforcement of foreign key constraints will be on by default
Full Auto Vacuum	sqlite_vacuum_full	Set the default auto vacuum to full
Incremental Auto Vacuum	sqlite_vacuum_incr	Set the default auto vacuum to incremental
Full Text Search Engine	sqlite_fts5	When this option is defined in the amalgamation, versions 5 of the full-text search engine (fts5) is added to the build automatically
International Components for Unicode	sqlite_icu	This option causes the International Components for Unicode or “ICU” extension to SQLite to be added to the build
Introspect PRAGMAS	sqlite_introspect	This option adds some extra PRAGMA statements. PRAGMA function_list
	PRAGMA module_list
	PRAGMA pragma_list

 |
JSON SQL Functions	sqlite_json	When this option is defined in the amalgamation, the JSON SQL functions are added to the build automatically
Pre Update Hook	sqlite_preupdate_hook	Registers a callback function that is invoked prior to each INSERT, UPDATE, and DELETE operation on a database table.
Secure Delete	sqlite_secure_delete	This compile-time option changes the default setting of the secure_delete pragma.When this option is not used, secure_delete defaults to off. When this option is present, secure_delete defaults to on.The secure_delete setting causes deleted content to be overwritten with zeros. There is a small performance penalty since additional I/O must occur.On the other hand, secure_delete can prevent fragments of sensitive information from lingering in unused parts of the database file after it has been deleted. See the documentation on the secure_delete pragma for additional information
Secure Delete (FAST)	sqlite_secure_delete_fast	For more information see PRAGMA secure_delete [https://www.sqlite.org/pragma.html#pragma_secure_delete]
Tracing / Debug	sqlite_trace	Activate trace functions
User Authentication	sqlite_userauth	SQLite User Authentication see User Authentication for more information.

 go-cache

go-cache

go-cache is an in-memory key:value store/cache similar to memcached that is
suitable for applications running on a single machine. Its major advantage is
that, being essentially a thread-safe map[string]interface{} with expiration
times, it doesn’t need to serialize or transmit its contents over the network.

Any object can be stored, for a given duration or forever, and the cache can be
safely used by multiple goroutines.

Although go-cache isn’t meant to be used as a persistent datastore, the entire
cache can be saved to and loaded from a file (using c.Items() to retrieve the
items map to serialize, and NewFrom() to create a cache from a deserialized
one) to recover from downtime quickly. (See the docs for NewFrom() for caveats.)

Installation

go get github.com/patrickmn/go-cache

Usage

import (
	"fmt"
	"github.com/patrickmn/go-cache"
	"time"
)

func main() {
	// Create a cache with a default expiration time of 5 minutes, and which
	// purges expired items every 10 minutes
	c := cache.New(5*time.Minute, 10*time.Minute)

	// Set the value of the key "foo" to "bar", with the default expiration time
	c.Set("foo", "bar", cache.DefaultExpiration)

	// Set the value of the key "baz" to 42, with no expiration time
	// (the item won't be removed until it is re-set, or removed using
	// c.Delete("baz")
	c.Set("baz", 42, cache.NoExpiration)

	// Get the string associated with the key "foo" from the cache
	foo, found := c.Get("foo")
	if found {
		fmt.Println(foo)
	}

	// Since Go is statically typed, and cache values can be anything, type
	// assertion is needed when values are being passed to functions that don't
	// take arbitrary types, (i.e. interface{}). The simplest way to do this for
	// values which will only be used once--e.g. for passing to another
	// function--is:
	foo, found := c.Get("foo")
	if found {
		MyFunction(foo.(string))
	}

	// This gets tedious if the value is used several times in the same function.
	// You might do either of the following instead:
	if x, found := c.Get("foo"); found {
		foo := x.(string)
		// ...
	}
	// or
	var foo string
	if x, found := c.Get("foo"); found {
		foo = x.(string)
	}
	// ...
	// foo can then be passed around freely as a string

	// Want performance? Store pointers!
	c.Set("foo", &MyStruct, cache.DefaultExpiration)
	if x, found := c.Get("foo"); found {
		foo := x.(*MyStruct)
			// ...
	}
}

Reference

godoc or http://godoc.org/github.com/patrickmn/go-cache

 UUID package for Go language

UUID package for Go language

[image: ../../../../_images/go.uuid.png]Build Status [https://travis-ci.org/satori/go.uuid]
[image: ../../../../_images/badge5.svg]Coverage Status [https://coveralls.io/github/satori/go.uuid]
[image: ../../../../_images/go.uuid]GoDoc [http://godoc.org/github.com/satori/go.uuid]

This package provides pure Go implementation of Universally Unique Identifier (UUID). Supported both creation and parsing of UUIDs.

With 100% test coverage and benchmarks out of box.

Supported versions:

	Version 1, based on timestamp and MAC address (RFC 4122)

	Version 2, based on timestamp, MAC address and POSIX UID/GID (DCE 1.1)

	Version 3, based on MD5 hashing (RFC 4122)

	Version 4, based on random numbers (RFC 4122)

	Version 5, based on SHA-1 hashing (RFC 4122)

Installation

Use the go command:

$ go get github.com/satori/go.uuid

Requirements

UUID package requires Go >= 1.2.

Example

package main

import (
	"fmt"
	"github.com/satori/go.uuid"
)

func main() {
	// Creating UUID Version 4
	u1 := uuid.NewV4()
	fmt.Printf("UUIDv4: %s\n", u1)

	// Parsing UUID from string input
	u2, err := uuid.FromString("6ba7b810-9dad-11d1-80b4-00c04fd430c8")
	if err != nil {
		fmt.Printf("Something gone wrong: %s", err)
	}
	fmt.Printf("Successfully parsed: %s", u2)
}

Documentation

Documentation [http://godoc.org/github.com/satori/go.uuid] is hosted at GoDoc project.

Links

	RFC 4122 [http://tools.ietf.org/html/rfc4122]

	DCE 1.1: Authentication and Security Services [http://pubs.opengroup.org/onlinepubs/9696989899/chap5.htm#tagcjh_08_02_01_01]

Copyright

Copyright (C) 2013-2018 by Maxim Bublis b@codemonkey.ru.

UUID package released under MIT License.
See LICENSE [https://github.com/satori/go.uuid/blob/master/LICENSE] for details.

 1.6.0

1.6.0

Fixes:

	end of line cleanup

	revert the entry concurrency bug fix whic leads to deadlock under some circumstances

	update dependency on go-windows-terminal-sequences to fix a crash with go 1.14

Features:

	add an option to the TextFormatter to completely disable fields quoting

1.5.0

Code quality:

	add golangci linter run on travis

Fixes:

	add mutex for hooks concurrent access on Entry data

	caller function field for go1.14

	fix build issue for gopherjs target

Feature:

	add an hooks/writer sub-package whose goal is to split output on different stream depending on the trace level

	add a DisableHTMLEscape option in the JSONFormatter

	add ForceQuote and PadLevelText options in the TextFormatter

1.4.2

	Fixes build break for plan9, nacl, solaris

1.4.1

This new release introduces:

	Enhance TextFormatter to not print caller information when they are empty (#944)

	Remove dependency on golang.org/x/crypto (#932, #943)

Fixes:

	Fix Entry.WithContext method to return a copy of the initial entry (#941)

1.4.0

This new release introduces:

	Add DeferExitHandler, similar to RegisterExitHandler but prepending the handler to the list of handlers (semantically like defer) (#848).

	Add CallerPrettyfier to JSONFormatter and TextFormatter (#909, #911)

	Add Entry.WithContext() and Entry.Context, to set a context on entries to be used e.g. in hooks (#919).

Fixes:

	Fix wrong method calls Logger.Print and Logger.Warningln (#893).

	Update Entry.Logf to not do string formatting unless the log level is enabled (#903)

	Fix infinite recursion on unknown Level.String() (#907)

	Fix race condition in getCaller (#916).

1.3.0

This new release introduces:

	Log, Logf, Logln functions for Logger and Entry that take a Level

Fixes:

	Building prometheus node_exporter on AIX (#840)

	Race condition in TextFormatter (#468)

	Travis CI import path (#868)

	Remove coloured output on Windows (#862)

	Pointer to func as field in JSONFormatter (#870)

	Properly marshal Levels (#873)

1.2.0

This new release introduces:

	A new method SetReportCaller in the Logger to enable the file, line and calling function from which the trace has been issued

	A new trace level named Trace whose level is below Debug

	A configurable exit function to be called upon a Fatal trace

	The Level object now implements encoding.TextUnmarshaler interface

1.1.1

This is a bug fix release.

	fix the build break on Solaris

	don’t drop a whole trace in JSONFormatter when a field param is a function pointer which can not be serialized

1.1.0

This new release introduces:

	several fixes:

	a fix for a race condition on entry formatting

	proper cleanup of previously used entries before putting them back in the pool

	the extra new line at the end of message in text formatter has been removed

	a new global public API to check if a level is activated: IsLevelEnabled

	the following methods have been added to the Logger object

	IsLevelEnabled

	SetFormatter

	SetOutput

	ReplaceHooks

	introduction of go module

	an indent configuration for the json formatter

	output colour support for windows

	the field sort function is now configurable for text formatter

	the CLICOLOR and CLICOLOR_FORCE environment variable support in text formater

1.0.6

This new release introduces:

	a new api WithTime which allows to easily force the time of the log entry
which is mostly useful for logger wrapper

	a fix reverting the immutability of the entry given as parameter to the hooks
a new configuration field of the json formatter in order to put all the fields
in a nested dictionnary

	a new SetOutput method in the Logger

	a new configuration of the textformatter to configure the name of the default keys

	a new configuration of the text formatter to disable the level truncation

1.0.5

	Fix hooks race (#707)

	Fix panic deadlock (#695)

1.0.4

	Fix race when adding hooks (#612)

	Fix terminal check in AppEngine (#635)

1.0.3

	Replace example files with testable examples

1.0.2

	bug: quote non-string values in text formatter (#583)

	Make (*Logger) SetLevel a public method

1.0.1

	bug: fix escaping in text formatter (#575)

1.0.0

	Officially changed name to lower-case

	bug: colors on Windows 10 (#541)

	bug: fix race in accessing level (#512)

0.11.5

	feature: add writer and writerlevel to entry (#372)

0.11.4

	bug: fix undefined variable on solaris (#493)

0.11.3

	formatter: configure quoting of empty values (#484)

	formatter: configure quoting character (default is ") (#484)

	bug: fix not importing io correctly in non-linux environments (#481)

0.11.2

	bug: fix windows terminal detection (#476)

0.11.1

	bug: fix tty detection with custom out (#471)

0.11.0

	performance: Use bufferpool to allocate (#370)

	terminal: terminal detection for app-engine (#343)

	feature: exit handler (#375)

0.10.0

	feature: Add a test hook (#180)

	feature: ParseLevel is now case-insensitive (#326)

	feature: FieldLogger interface that generalizes Logger and Entry (#308)

	performance: avoid re-allocations on WithFields (#335)

0.9.0

	logrus/text_formatter: don’t emit empty msg

	logrus/hooks/airbrake: move out of main repository

	logrus/hooks/sentry: move out of main repository

	logrus/hooks/papertrail: move out of main repository

	logrus/hooks/bugsnag: move out of main repository

	logrus/core: run tests with -race

	logrus/core: detect TTY based on stderr

	logrus/core: support WithError on logger

	logrus/core: Solaris support

0.8.7

	logrus/core: fix possible race (#216)

	logrus/doc: small typo fixes and doc improvements

0.8.6

	hooks/raven: allow passing an initialized client

0.8.5

	logrus/core: revert #208

0.8.4

	formatter/text: fix data race (#218)

0.8.3

	logrus/core: fix entry log level (#208)

	logrus/core: improve performance of text formatter by 40%

	logrus/core: expose LevelHooks type

	logrus/core: add support for DragonflyBSD and NetBSD

	formatter/text: print structs more verbosely

0.8.2

	logrus: fix more Fatal family functions

0.8.1

	logrus: fix not exiting on Fatalf and Fatalln

0.8.0

	logrus: defaults to stderr instead of stdout

	hooks/sentry: add special field for *http.Request

	formatter/text: ignore Windows for colors

0.7.3

	formatter/*: allow configuration of timestamp layout

0.7.2

	formatter/text: Add configuration option for time format (#158)

 Logrus

Logrus [image: :walrus:] [image: ../../../../_images/logrus.svg]Build Status [https://travis-ci.org/sirupsen/logrus] [image: ../../../../_images/logrus1.svg]GoDoc [https://godoc.org/github.com/sirupsen/logrus]

Logrus is a structured logger for Go (golang), completely API compatible with
the standard library logger.

Logrus is in maintenance-mode. We will not be introducing new features. It’s
simply too hard to do in a way that won’t break many people’s projects, which is
the last thing you want from your Logging library (again…).

This does not mean Logrus is dead. Logrus will continue to be maintained for
security, (backwards compatible) bug fixes, and performance (where we are
limited by the interface).

I believe Logrus’ biggest contribution is to have played a part in today’s
widespread use of structured logging in Golang. There doesn’t seem to be a
reason to do a major, breaking iteration into Logrus V2, since the fantastic Go
community has built those independently. Many fantastic alternatives have sprung
up. Logrus would look like those, had it been re-designed with what we know
about structured logging in Go today. Check out, for example,
Zerolog [https://github.com/rs/zerolog], Zap [https://github.com/uber-go/zap], and Apex [https://github.com/apex/log].

Seeing weird case-sensitive problems? It’s in the past been possible to
import Logrus as both upper- and lower-case. Due to the Go package environment,
this caused issues in the community and we needed a standard. Some environments
experienced problems with the upper-case variant, so the lower-case was decided.
Everything using logrus will need to use the lower-case:
github.com/sirupsen/logrus. Any package that isn’t, should be changed.

To fix Glide, see these
comments [https://github.com/sirupsen/logrus/issues/553#issuecomment-306591437].
For an in-depth explanation of the casing issue, see this
comment [https://github.com/sirupsen/logrus/issues/570#issuecomment-313933276].

Nicely color-coded in development (when a TTY is attached, otherwise just
plain text):

[image: ../../../../_images/PY7qMwd.png]Colored

With log.SetFormatter(&log.JSONFormatter{}), for easy parsing by logstash
or Splunk:

{"animal":"walrus","level":"info","msg":"A group of walrus emerges from the
ocean","size":10,"time":"2014-03-10 19:57:38.562264131 -0400 EDT"}

{"level":"warning","msg":"The group's number increased tremendously!",
"number":122,"omg":true,"time":"2014-03-10 19:57:38.562471297 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"A giant walrus appears!",
"size":10,"time":"2014-03-10 19:57:38.562500591 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"Tremendously sized cow enters the ocean.",
"size":9,"time":"2014-03-10 19:57:38.562527896 -0400 EDT"}

{"level":"fatal","msg":"The ice breaks!","number":100,"omg":true,
"time":"2014-03-10 19:57:38.562543128 -0400 EDT"}

With the default log.SetFormatter(&log.TextFormatter{}) when a TTY is not
attached, the output is compatible with the
logfmt [http://godoc.org/github.com/kr/logfmt] format:

time="2015-03-26T01:27:38-04:00" level=debug msg="Started observing beach" animal=walrus number=8
time="2015-03-26T01:27:38-04:00" level=info msg="A group of walrus emerges from the ocean" animal=walrus size=10
time="2015-03-26T01:27:38-04:00" level=warning msg="The group's number increased tremendously!" number=122 omg=true
time="2015-03-26T01:27:38-04:00" level=debug msg="Temperature changes" temperature=-4
time="2015-03-26T01:27:38-04:00" level=panic msg="It's over 9000!" animal=orca size=9009
time="2015-03-26T01:27:38-04:00" level=fatal msg="The ice breaks!" err=&{0x2082280c0 map[animal:orca size:9009] 2015-03-26 01:27:38.441574009 -0400 EDT panic It's over 9000!} number=100 omg=true

To ensure this behaviour even if a TTY is attached, set your formatter as follows:

	log.SetFormatter(&log.TextFormatter{
		DisableColors: true,
		FullTimestamp: true,
	})

Logging Method Name

If you wish to add the calling method as a field, instruct the logger via:

log.SetReportCaller(true)

This adds the caller as ‘method’ like so:

{"animal":"penguin","level":"fatal","method":"github.com/sirupsen/arcticcreatures.migrate","msg":"a penguin swims by",
"time":"2014-03-10 19:57:38.562543129 -0400 EDT"}

time="2015-03-26T01:27:38-04:00" level=fatal method=github.com/sirupsen/arcticcreatures.migrate msg="a penguin swims by" animal=penguin

Note that this does add measurable overhead - the cost will depend on the version of Go, but is
between 20 and 40% in recent tests with 1.6 and 1.7. You can validate this in your
environment via benchmarks:

go test -bench=.*CallerTracing

Case-sensitivity

The organization’s name was changed to lower-case–and this will not be changed
back. If you are getting import conflicts due to case sensitivity, please use
the lower-case import: github.com/sirupsen/logrus.

Example

The simplest way to use Logrus is simply the package-level exported logger:

package main

import (
 log "github.com/sirupsen/logrus"
)

func main() {
 log.WithFields(log.Fields{
 "animal": "walrus",
 }).Info("A walrus appears")
}

Note that it’s completely api-compatible with the stdlib logger, so you can
replace your log imports everywhere with log "github.com/sirupsen/logrus"
and you’ll now have the flexibility of Logrus. You can customize it all you
want:

package main

import (
 "os"
 log "github.com/sirupsen/logrus"
)

func init() {
 // Log as JSON instead of the default ASCII formatter.
 log.SetFormatter(&log.JSONFormatter{})

 // Output to stdout instead of the default stderr
 // Can be any io.Writer, see below for File example
 log.SetOutput(os.Stdout)

 // Only log the warning severity or above.
 log.SetLevel(log.WarnLevel)
}

func main() {
 log.WithFields(log.Fields{
 "animal": "walrus",
 "size": 10,
 }).Info("A group of walrus emerges from the ocean")

 log.WithFields(log.Fields{
 "omg": true,
 "number": 122,
 }).Warn("The group's number increased tremendously!")

 log.WithFields(log.Fields{
 "omg": true,
 "number": 100,
 }).Fatal("The ice breaks!")

 // A common pattern is to re-use fields between logging statements by re-using
 // the logrus.Entry returned from WithFields()
 contextLogger := log.WithFields(log.Fields{
 "common": "this is a common field",
 "other": "I also should be logged always",
 })

 contextLogger.Info("I'll be logged with common and other field")
 contextLogger.Info("Me too")
}

For more advanced usage such as logging to multiple locations from the same
application, you can also create an instance of the logrus Logger:

package main

import (
 "os"
 "github.com/sirupsen/logrus"
)

// Create a new instance of the logger. You can have any number of instances.
var log = logrus.New()

func main() {
 // The API for setting attributes is a little different than the package level
 // exported logger. See Godoc.
 log.Out = os.Stdout

 // You could set this to any `io.Writer` such as a file
 // file, err := os.OpenFile("logrus.log", os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666)
 // if err == nil {
 // log.Out = file
 // } else {
 // log.Info("Failed to log to file, using default stderr")
 // }

 log.WithFields(logrus.Fields{
 "animal": "walrus",
 "size": 10,
 }).Info("A group of walrus emerges from the ocean")
}

Fields

Logrus encourages careful, structured logging through logging fields instead of
long, unparseable error messages. For example, instead of: log.Fatalf("Failed to send event %s to topic %s with key %d"), you should log the much more
discoverable:

log.WithFields(log.Fields{
 "event": event,
 "topic": topic,
 "key": key,
}).Fatal("Failed to send event")

We’ve found this API forces you to think about logging in a way that produces
much more useful logging messages. We’ve been in countless situations where just
a single added field to a log statement that was already there would’ve saved us
hours. The WithFields call is optional.

In general, with Logrus using any of the printf-family functions should be
seen as a hint you should add a field, however, you can still use the
printf-family functions with Logrus.

Default Fields

Often it’s helpful to have fields always attached to log statements in an
application or parts of one. For example, you may want to always log the
request_id and user_ip in the context of a request. Instead of writing
log.WithFields(log.Fields{"request_id": request_id, "user_ip": user_ip}) on
every line, you can create a logrus.Entry to pass around instead:

requestLogger := log.WithFields(log.Fields{"request_id": request_id, "user_ip": user_ip})
requestLogger.Info("something happened on that request") # will log request_id and user_ip
requestLogger.Warn("something not great happened")

Hooks

You can add hooks for logging levels. For example to send errors to an exception
tracking service on Error, Fatal and Panic, info to StatsD or log to
multiple places simultaneously, e.g. syslog.

Logrus comes with built-in hooks. Add those, or your custom hook, in
init:

import (
 log "github.com/sirupsen/logrus"
 "gopkg.in/gemnasium/logrus-airbrake-hook.v2" // the package is named "airbrake"
 logrus_syslog "github.com/sirupsen/logrus/hooks/syslog"
 "log/syslog"
)

func init() {

 // Use the Airbrake hook to report errors that have Error severity or above to
 // an exception tracker. You can create custom hooks, see the Hooks section.
 log.AddHook(airbrake.NewHook(123, "xyz", "production"))

 hook, err := logrus_syslog.NewSyslogHook("udp", "localhost:514", syslog.LOG_INFO, "")
 if err != nil {
 log.Error("Unable to connect to local syslog daemon")
 } else {
 log.AddHook(hook)
 }
}

Note: Syslog hook also support connecting to local syslog (Ex. “/dev/log” or “/var/run/syslog” or “/var/run/log”). For the detail, please check the syslog hook README.

A list of currently known service hooks can be found in this wiki page [https://github.com/sirupsen/logrus/wiki/Hooks]

Level logging

Logrus has seven logging levels: Trace, Debug, Info, Warning, Error, Fatal and Panic.

log.Trace("Something very low level.")
log.Debug("Useful debugging information.")
log.Info("Something noteworthy happened!")
log.Warn("You should probably take a look at this.")
log.Error("Something failed but I'm not quitting.")
// Calls os.Exit(1) after logging
log.Fatal("Bye.")
// Calls panic() after logging
log.Panic("I'm bailing.")

You can set the logging level on a Logger, then it will only log entries with
that severity or anything above it:

// Will log anything that is info or above (warn, error, fatal, panic). Default.
log.SetLevel(log.InfoLevel)

It may be useful to set log.Level = logrus.DebugLevel in a debug or verbose
environment if your application has that.

Entries

Besides the fields added with WithField or WithFields some fields are
automatically added to all logging events:

	time. The timestamp when the entry was created.

	msg. The logging message passed to {Info,Warn,Error,Fatal,Panic} after
the AddFields call. E.g. Failed to send event.

	level. The logging level. E.g. info.

Environments

Logrus has no notion of environment.

If you wish for hooks and formatters to only be used in specific environments,
you should handle that yourself. For example, if your application has a global
variable Environment, which is a string representation of the environment you
could do:

import (
 log "github.com/sirupsen/logrus"
)

init() {
 // do something here to set environment depending on an environment variable
 // or command-line flag
 if Environment == "production" {
 log.SetFormatter(&log.JSONFormatter{})
 } else {
 // The TextFormatter is default, you don't actually have to do this.
 log.SetFormatter(&log.TextFormatter{})
 }
}

This configuration is how logrus was intended to be used, but JSON in
production is mostly only useful if you do log aggregation with tools like
Splunk or Logstash.

Formatters

The built-in logging formatters are:

	logrus.TextFormatter. Logs the event in colors if stdout is a tty, otherwise
without colors.

	Note: to force colored output when there is no TTY, set the ForceColors
field to true. To force no colored output even if there is a TTY set the
DisableColors field to true. For Windows, see
github.com/mattn/go-colorable [https://github.com/mattn/go-colorable].

	When colors are enabled, levels are truncated to 4 characters by default. To disable
truncation set the DisableLevelTruncation field to true.

	When outputting to a TTY, it’s often helpful to visually scan down a column where all the levels are the same width. Setting the PadLevelText field to true enables this behavior, by adding padding to the level text.

	All options are listed in the generated docs [https://godoc.org/github.com/sirupsen/logrus#TextFormatter].

	logrus.JSONFormatter. Logs fields as JSON.

	All options are listed in the generated docs [https://godoc.org/github.com/sirupsen/logrus#JSONFormatter].

Third party logging formatters:

	FluentdFormatter [https://github.com/joonix/log]. Formats entries that can be parsed by Kubernetes and Google Container Engine.

	GELF [https://github.com/fabienm/go-logrus-formatters]. Formats entries so they comply to Graylog’s GELF 1.1 specification [http://docs.graylog.org/en/2.4/pages/gelf.html].

	logstash [https://github.com/bshuster-repo/logrus-logstash-hook]. Logs fields as Logstash [http://logstash.net] Events.

	prefixed [https://github.com/x-cray/logrus-prefixed-formatter]. Displays log entry source along with alternative layout.

	zalgo [https://github.com/aybabtme/logzalgo]. Invoking the Power of Zalgo.

	nested-logrus-formatter [https://github.com/antonfisher/nested-logrus-formatter]. Converts logrus fields to a nested structure.

	powerful-logrus-formatter [https://github.com/zput/zxcTool]. get fileName, log’s line number and the latest function’s name when print log; Sava log to files.

	caption-json-formatter [https://github.com/nolleh/caption_json_formatter]. logrus’s message json formatter with human-readable caption added.

You can define your formatter by implementing the Formatter interface,
requiring a Format method. Format takes an *Entry. entry.Data is a
Fields type (map[string]interface{}) with all your fields as well as the
default ones (see Entries section above):

type MyJSONFormatter struct {
}

log.SetFormatter(new(MyJSONFormatter))

func (f *MyJSONFormatter) Format(entry *Entry) ([]byte, error) {
 // Note this doesn't include Time, Level and Message which are available on
 // the Entry. Consult `godoc` on information about those fields or read the
 // source of the official loggers.
 serialized, err := json.Marshal(entry.Data)
 if err != nil {
 return nil, fmt.Errorf("Failed to marshal fields to JSON, %v", err)
 }
 return append(serialized, '\n'), nil
}

Logger as an io.Writer

Logrus can be transformed into an io.Writer. That writer is the end of an io.Pipe and it is your responsibility to close it.

w := logger.Writer()
defer w.Close()

srv := http.Server{
 // create a stdlib log.Logger that writes to
 // logrus.Logger.
 ErrorLog: log.New(w, "", 0),
}

Each line written to that writer will be printed the usual way, using formatters
and hooks. The level for those entries is info.

This means that we can override the standard library logger easily:

logger := logrus.New()
logger.Formatter = &logrus.JSONFormatter{}

// Use logrus for standard log output
// Note that `log` here references stdlib's log
// Not logrus imported under the name `log`.
log.SetOutput(logger.Writer())

Rotation

Log rotation is not provided with Logrus. Log rotation should be done by an
external program (like logrotate(8)) that can compress and delete old log
entries. It should not be a feature of the application-level logger.

Tools

Tool	Description
—-	———–
Logrus Mate [https://github.com/gogap/logrus_mate]	Logrus mate is a tool for Logrus to manage loggers, you can initial logger’s level, hook and formatter by config file, the logger will be generated with different configs in different environments.
Logrus Viper Helper [https://github.com/heirko/go-contrib/tree/master/logrusHelper]	An Helper around Logrus to wrap with spf13/Viper to load configuration with fangs! And to simplify Logrus configuration use some behavior of Logrus Mate [https://github.com/gogap/logrus_mate]. sample [https://github.com/heirko/iris-contrib/blob/master/middleware/logrus-logger/example]

Testing

Logrus has a built in facility for asserting the presence of log messages. This is implemented through the test hook and provides:

	decorators for existing logger (test.NewLocal and test.NewGlobal) which basically just adds the test hook

	a test logger (test.NewNullLogger) that just records log messages (and does not output any):

import(
 "github.com/sirupsen/logrus"
 "github.com/sirupsen/logrus/hooks/test"
 "github.com/stretchr/testify/assert"
 "testing"
)

func TestSomething(t*testing.T){
 logger, hook := test.NewNullLogger()
 logger.Error("Helloerror")

 assert.Equal(t, 1, len(hook.Entries))
 assert.Equal(t, logrus.ErrorLevel, hook.LastEntry().Level)
 assert.Equal(t, "Helloerror", hook.LastEntry().Message)

 hook.Reset()
 assert.Nil(t, hook.LastEntry())
}

Fatal handlers

Logrus can register one or more functions that will be called when any fatal
level message is logged. The registered handlers will be executed before
logrus performs an os.Exit(1). This behavior may be helpful if callers need
to gracefully shutdown. Unlike a panic("Something went wrong...") call which can be intercepted with a deferred recover a call to os.Exit(1) can not be intercepted.

...
handler := func() {
 // gracefully shutdown something...
}
logrus.RegisterExitHandler(handler)
...

Thread safety

By default, Logger is protected by a mutex for concurrent writes. The mutex is held when calling hooks and writing logs.
If you are sure such locking is not needed, you can call logger.SetNoLock() to disable the locking.

Situation when locking is not needed includes:

	You have no hooks registered, or hooks calling is already thread-safe.

	Writing to logger.Out is already thread-safe, for example:

	logger.Out is protected by locks.

	logger.Out is an os.File handler opened with O_APPEND flag, and every write is smaller than 4k. (This allows multi-thread/multi-process writing)

(Refer to http://www.notthewizard.com/2014/06/17/are-files-appends-really-atomic/)

 Table of Contents

 [image: ../../../../_images/a5889e7aed127aa5272543b0c4840ceb9029fa15.png]cobra logo

Cobra is both a library for creating powerful modern CLI applications as well as a program to generate applications and command files.

Many of the most widely used Go projects are built using Cobra, such as:
Kubernetes [http://kubernetes.io/],
Hugo [http://gohugo.io],
rkt [https://github.com/coreos/rkt],
etcd [https://github.com/coreos/etcd],
Moby (former Docker) [https://github.com/moby/moby],
Docker (distribution) [https://github.com/docker/distribution],
OpenShift [https://www.openshift.com/],
Delve [https://github.com/derekparker/delve],
GopherJS [http://www.gopherjs.org/],
CockroachDB [http://www.cockroachlabs.com/],
Bleve [http://www.blevesearch.com/],
ProjectAtomic (enterprise) [http://www.projectatomic.io/],
Giant Swarm’s gsctl [https://github.com/giantswarm/gsctl],
Nanobox [https://github.com/nanobox-io/nanobox]/Nanopack [https://github.com/nanopack],
rclone [http://rclone.org/],
nehm [https://github.com/bogem/nehm],
Pouch [https://github.com/alibaba/pouch],
Istio [https://istio.io],
Prototool [https://github.com/uber/prototool],
mattermost-server [https://github.com/mattermost/mattermost-server],
Gardener [https://github.com/gardener/gardenctl],
Linkerd [https://linkerd.io/],
Github CLI [https://github.com/cli/cli]
etc.

[image: Travis CI status]Build Status [https://travis-ci.org/spf13/cobra]
[image: ../../../../_images/cobra1.svg]GoDoc [https://godoc.org/github.com/spf13/cobra]
[image: ../../../../_images/cobra2.svg]Go Report Card [https://goreportcard.com/report/github.com/spf13/cobra]

Table of Contents

	Overview

	Concepts

	Commands

	Flags

	Installing

	Getting Started

	Using the Cobra Generator

	Using the Cobra Library

	Working with Flags

	Positional and Custom Arguments

	Example

	Help Command

	Usage Message

	PreRun and PostRun Hooks

	Suggestions when “unknown command” happens

	Generating documentation for your command

	Generating bash completions

	Generating zsh completions

	Contributing

	License

Overview

Cobra is a library providing a simple interface to create powerful modern CLI
interfaces similar to git & go tools.

Cobra is also an application that will generate your application scaffolding to rapidly
develop a Cobra-based application.

Cobra provides:

	Easy subcommand-based CLIs: app server, app fetch, etc.

	Fully POSIX-compliant flags (including short & long versions)

	Nested subcommands

	Global, local and cascading flags

	Easy generation of applications & commands with cobra init appname & cobra add cmdname

	Intelligent suggestions (app srver… did you mean app server?)

	Automatic help generation for commands and flags

	Automatic help flag recognition of -h, --help, etc.

	Automatically generated bash autocomplete for your application

	Automatically generated man pages for your application

	Command aliases so you can change things without breaking them

	The flexibility to define your own help, usage, etc.

	Optional tight integration with viper [http://github.com/spf13/viper] for 12-factor apps

Concepts

Cobra is built on a structure of commands, arguments & flags.

Commands represent actions, Args are things and Flags are modifiers for those actions.

The best applications will read like sentences when used. Users will know how
to use the application because they will natively understand how to use it.

The pattern to follow is
APPNAME VERB NOUN --ADJECTIVE.
or
APPNAME COMMAND ARG --FLAG

A few good real world examples may better illustrate this point.

In the following example, ‘server’ is a command, and ‘port’ is a flag:

hugo server --port=1313

In this command we are telling Git to clone the url bare.

git clone URL --bare

Commands

Command is the central point of the application. Each interaction that
the application supports will be contained in a Command. A command can
have children commands and optionally run an action.

In the example above, ‘server’ is the command.

More about cobra.Command [https://godoc.org/github.com/spf13/cobra#Command]

Flags

A flag is a way to modify the behavior of a command. Cobra supports
fully POSIX-compliant flags as well as the Go flag package [https://golang.org/pkg/flag/].
A Cobra command can define flags that persist through to children commands
and flags that are only available to that command.

In the example above, ‘port’ is the flag.

Flag functionality is provided by the pflag
library [https://github.com/spf13/pflag], a fork of the flag standard library
which maintains the same interface while adding POSIX compliance.

Installing

Using Cobra is easy. First, use go get to install the latest version
of the library. This command will install the cobra generator executable
along with the library and its dependencies:

go get -u github.com/spf13/cobra/cobra

Next, include Cobra in your application:

import "github.com/spf13/cobra"

Getting Started

While you are welcome to provide your own organization, typically a Cobra-based
application will follow the following organizational structure:

 ▾ appName/
 ▾ cmd/
 add.go
 your.go
 commands.go
 here.go
 main.go

In a Cobra app, typically the main.go file is very bare. It serves one purpose: initializing Cobra.

package main

import (
 "{pathToYourApp}/cmd"
)

func main() {
 cmd.Execute()
}

Using the Cobra Generator

Cobra provides its own program that will create your application and add any
commands you want. It’s the easiest way to incorporate Cobra into your application.

Here [https://github.com/spf13/cobra/blob/master/cobra/README] you can find more information about it.

Using the Cobra Library

To manually implement Cobra you need to create a bare main.go file and a rootCmd file.
You will optionally provide additional commands as you see fit.

Create rootCmd

Cobra doesn’t require any special constructors. Simply create your commands.

Ideally you place this in app/cmd/root.go:

var rootCmd = &cobra.Command{
 Use: "hugo",
 Short: "Hugo is a very fast static site generator",
 Long: `A Fast and Flexible Static Site Generator built with
 love by spf13 and friends in Go.
 Complete documentation is available at http://hugo.spf13.com`,
 Run: func(cmd *cobra.Command, args []string) {
 // Do Stuff Here
 },
}

func Execute() {
 if err := rootCmd.Execute(); err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

You will additionally define flags and handle configuration in your init() function.

For example cmd/root.go:

package cmd

import (
	"fmt"
	"os"

	homedir "github.com/mitchellh/go-homedir"
	"github.com/spf13/cobra"
	"github.com/spf13/viper"
)

var (
	// Used for flags.
	cfgFile string
	userLicense string

	rootCmd = &cobra.Command{
		Use: "cobra",
		Short: "A generator for Cobra based Applications",
		Long: `Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.`,
	}
)

// Execute executes the root command.
func Execute() error {
	return rootCmd.Execute()
}

func init() {
	cobra.OnInitialize(initConfig)

	rootCmd.PersistentFlags().StringVar(&cfgFile, "config", "", "config file (default is $HOME/.cobra.yaml)")
	rootCmd.PersistentFlags().StringP("author", "a", "YOUR NAME", "author name for copyright attribution")
	rootCmd.PersistentFlags().StringVarP(&userLicense, "license", "l", "", "name of license for the project")
	rootCmd.PersistentFlags().Bool("viper", true, "use Viper for configuration")
	viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
	viper.BindPFlag("useViper", rootCmd.PersistentFlags().Lookup("viper"))
	viper.SetDefault("author", "NAME HERE <EMAIL ADDRESS>")
	viper.SetDefault("license", "apache")

	rootCmd.AddCommand(addCmd)
	rootCmd.AddCommand(initCmd)
}

func er(msg interface{}) {
	fmt.Println("Error:", msg)
	os.Exit(1)
}

func initConfig() {
	if cfgFile != "" {
		// Use config file from the flag.
		viper.SetConfigFile(cfgFile)
	} else {
		// Find home directory.
		home, err := homedir.Dir()
		if err != nil {
			er(err)
		}

		// Search config in home directory with name ".cobra" (without extension).
		viper.AddConfigPath(home)
		viper.SetConfigName(".cobra")
	}

	viper.AutomaticEnv()

	if err := viper.ReadInConfig(); err == nil {
		fmt.Println("Using config file:", viper.ConfigFileUsed())
	}
}

Create your main.go

With the root command you need to have your main function execute it.
Execute should be run on the root for clarity, though it can be called on any command.

In a Cobra app, typically the main.go file is very bare. It serves, one purpose, to initialize Cobra.

package main

import (
 "{pathToYourApp}/cmd"
)

func main() {
 cmd.Execute()
}

Create additional commands

Additional commands can be defined and typically are each given their own file
inside of the cmd/ directory.

If you wanted to create a version command you would create cmd/version.go and
populate it with the following:

package cmd

import (
 "fmt"

 "github.com/spf13/cobra"
)

func init() {
 rootCmd.AddCommand(versionCmd)
}

var versionCmd = &cobra.Command{
 Use: "version",
 Short: "Print the version number of Hugo",
 Long: `All software has versions. This is Hugo's`,
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Hugo Static Site Generator v0.9 -- HEAD")
 },
}

Working with Flags

Flags provide modifiers to control how the action command operates.

Assign flags to a command

Since the flags are defined and used in different locations, we need to
define a variable outside with the correct scope to assign the flag to
work with.

var Verbose bool
var Source string

There are two different approaches to assign a flag.

Persistent Flags

A flag can be ‘persistent’ meaning that this flag will be available to the
command it’s assigned to as well as every command under that command. For
global flags, assign a flag as a persistent flag on the root.

rootCmd.PersistentFlags().BoolVarP(&Verbose, "verbose", "v", false, "verbose output")

Local Flags

A flag can also be assigned locally which will only apply to that specific command.

localCmd.Flags().StringVarP(&Source, "source", "s", "", "Source directory to read from")

Local Flag on Parent Commands

By default Cobra only parses local flags on the target command, any local flags on
parent commands are ignored. By enabling Command.TraverseChildren Cobra will
parse local flags on each command before executing the target command.

command := cobra.Command{
 Use: "print [OPTIONS] [COMMANDS]",
 TraverseChildren: true,
}

Bind Flags with Config

You can also bind your flags with viper [https://github.com/spf13/viper]:

var author string

func init() {
 rootCmd.PersistentFlags().StringVar(&author, "author", "YOUR NAME", "Author name for copyright attribution")
 viper.BindPFlag("author", rootCmd.PersistentFlags().Lookup("author"))
}

In this example the persistent flag author is bound with viper.
Note, that the variable author will not be set to the value from config,
when the --author flag is not provided by user.

More in viper documentation [https://github.com/spf13/viper#working-with-flags].

Required flags

Flags are optional by default. If instead you wish your command to report an error
when a flag has not been set, mark it as required:

rootCmd.Flags().StringVarP(&Region, "region", "r", "", "AWS region (required)")
rootCmd.MarkFlagRequired("region")

Positional and Custom Arguments

Validation of positional arguments can be specified using the Args field
of Command.

The following validators are built in:

	NoArgs - the command will report an error if there are any positional args.

	ArbitraryArgs - the command will accept any args.

	OnlyValidArgs - the command will report an error if there are any positional args that are not in the ValidArgs field of Command.

	MinimumNArgs(int) - the command will report an error if there are not at least N positional args.

	MaximumNArgs(int) - the command will report an error if there are more than N positional args.

	ExactArgs(int) - the command will report an error if there are not exactly N positional args.

	ExactValidArgs(int) - the command will report an error if there are not exactly N positional args OR if there are any positional args that are not in the ValidArgs field of Command

	RangeArgs(min, max) - the command will report an error if the number of args is not between the minimum and maximum number of expected args.

An example of setting the custom validator:

var cmd = &cobra.Command{
 Short: "hello",
 Args: func(cmd *cobra.Command, args []string) error {
 if len(args) < 1 {
 return errors.New("requires a color argument")
 }
 if myapp.IsValidColor(args[0]) {
 return nil
 }
 return fmt.Errorf("invalid color specified: %s", args[0])
 },
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Hello, World!")
 },
}

Example

In the example below, we have defined three commands. Two are at the top level
and one (cmdTimes) is a child of one of the top commands. In this case the root
is not executable meaning that a subcommand is required. This is accomplished
by not providing a ‘Run’ for the ‘rootCmd’.

We have only defined one flag for a single command.

More documentation about flags is available at https://github.com/spf13/pflag

package main

import (
 "fmt"
 "strings"

 "github.com/spf13/cobra"
)

func main() {
 var echoTimes int

 var cmdPrint = &cobra.Command{
 Use: "print [string to print]",
 Short: "Print anything to the screen",
 Long: `print is for printing anything back to the screen.
For many years people have printed back to the screen.`,
 Args: cobra.MinimumNArgs(1),
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Print: " + strings.Join(args, " "))
 },
 }

 var cmdEcho = &cobra.Command{
 Use: "echo [string to echo]",
 Short: "Echo anything to the screen",
 Long: `echo is for echoing anything back.
Echo works a lot like print, except it has a child command.`,
 Args: cobra.MinimumNArgs(1),
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Println("Echo: " + strings.Join(args, " "))
 },
 }

 var cmdTimes = &cobra.Command{
 Use: "times [string to echo]",
 Short: "Echo anything to the screen more times",
 Long: `echo things multiple times back to the user by providing
a count and a string.`,
 Args: cobra.MinimumNArgs(1),
 Run: func(cmd *cobra.Command, args []string) {
 for i := 0; i < echoTimes; i++ {
 fmt.Println("Echo: " + strings.Join(args, " "))
 }
 },
 }

 cmdTimes.Flags().IntVarP(&echoTimes, "times", "t", 1, "times to echo the input")

 var rootCmd = &cobra.Command{Use: "app"}
 rootCmd.AddCommand(cmdPrint, cmdEcho)
 cmdEcho.AddCommand(cmdTimes)
 rootCmd.Execute()
}

For a more complete example of a larger application, please checkout Hugo [http://gohugo.io/].

Help Command

Cobra automatically adds a help command to your application when you have subcommands.
This will be called when a user runs ‘app help’. Additionally, help will also
support all other commands as input. Say, for instance, you have a command called
‘create’ without any additional configuration; Cobra will work when ‘app help
create’ is called. Every command will automatically have the ‘–help’ flag added.

Example

The following output is automatically generated by Cobra. Nothing beyond the
command and flag definitions are needed.

$ cobra help

Cobra is a CLI library for Go that empowers applications.
This application is a tool to generate the needed files
to quickly create a Cobra application.

Usage:
 cobra [command]

Available Commands:
 add Add a command to a Cobra Application
 help Help about any command
 init Initialize a Cobra Application

Flags:
 -a, --author string author name for copyright attribution (default "YOUR NAME")
 --config string config file (default is $HOME/.cobra.yaml)
 -h, --help help for cobra
 -l, --license string name of license for the project
 --viper use Viper for configuration (default true)

Use "cobra [command] --help" for more information about a command.

Help is just a command like any other. There is no special logic or behavior
around it. In fact, you can provide your own if you want.

Defining your own help

You can provide your own Help command or your own template for the default command to use
with following functions:

cmd.SetHelpCommand(cmd *Command)
cmd.SetHelpFunc(f func(*Command, []string))
cmd.SetHelpTemplate(s string)

The latter two will also apply to any children commands.

Usage Message

When the user provides an invalid flag or invalid command, Cobra responds by
showing the user the ‘usage’.

Example

You may recognize this from the help above. That’s because the default help
embeds the usage as part of its output.

$ cobra --invalid
Error: unknown flag: --invalid
Usage:
 cobra [command]

Available Commands:
 add Add a command to a Cobra Application
 help Help about any command
 init Initialize a Cobra Application

Flags:
 -a, --author string author name for copyright attribution (default "YOUR NAME")
 --config string config file (default is $HOME/.cobra.yaml)
 -h, --help help for cobra
 -l, --license string name of license for the project
 --viper use Viper for configuration (default true)

Use "cobra [command] --help" for more information about a command.

Defining your own usage

You can provide your own usage function or template for Cobra to use.
Like help, the function and template are overridable through public methods:

cmd.SetUsageFunc(f func(*Command) error)
cmd.SetUsageTemplate(s string)

Version Flag

Cobra adds a top-level ‘–version’ flag if the Version field is set on the root command.
Running an application with the ‘–version’ flag will print the version to stdout using
the version template. The template can be customized using the
cmd.SetVersionTemplate(s string) function.

PreRun and PostRun Hooks

It is possible to run functions before or after the main Run function of your command. The PersistentPreRun and PreRun functions will be executed before Run. PersistentPostRun and PostRun will be executed after Run. The Persistent*Run functions will be inherited by children if they do not declare their own. These functions are run in the following order:

	PersistentPreRun

	PreRun

	Run

	PostRun

	PersistentPostRun

An example of two commands which use all of these features is below. When the subcommand is executed, it will run the root command’s PersistentPreRun but not the root command’s PersistentPostRun:

package main

import (
 "fmt"

 "github.com/spf13/cobra"
)

func main() {

 var rootCmd = &cobra.Command{
 Use: "root [sub]",
 Short: "My root command",
 PersistentPreRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PersistentPreRun with args: %v\n", args)
 },
 PreRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PreRun with args: %v\n", args)
 },
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd Run with args: %v\n", args)
 },
 PostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PostRun with args: %v\n", args)
 },
 PersistentPostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside rootCmd PersistentPostRun with args: %v\n", args)
 },
 }

 var subCmd = &cobra.Command{
 Use: "sub [no options!]",
 Short: "My subcommand",
 PreRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd PreRun with args: %v\n", args)
 },
 Run: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd Run with args: %v\n", args)
 },
 PostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd PostRun with args: %v\n", args)
 },
 PersistentPostRun: func(cmd *cobra.Command, args []string) {
 fmt.Printf("Inside subCmd PersistentPostRun with args: %v\n", args)
 },
 }

 rootCmd.AddCommand(subCmd)

 rootCmd.SetArgs([]string{""})
 rootCmd.Execute()
 fmt.Println()
 rootCmd.SetArgs([]string{"sub", "arg1", "arg2"})
 rootCmd.Execute()
}

Output:

Inside rootCmd PersistentPreRun with args: []
Inside rootCmd PreRun with args: []
Inside rootCmd Run with args: []
Inside rootCmd PostRun with args: []
Inside rootCmd PersistentPostRun with args: []

Inside rootCmd PersistentPreRun with args: [arg1 arg2]
Inside subCmd PreRun with args: [arg1 arg2]
Inside subCmd Run with args: [arg1 arg2]
Inside subCmd PostRun with args: [arg1 arg2]
Inside subCmd PersistentPostRun with args: [arg1 arg2]

Suggestions when “unknown command” happens

Cobra will print automatic suggestions when “unknown command” errors happen. This allows Cobra to behave similarly to the git command when a typo happens. For example:

$ hugo srever
Error: unknown command "srever" for "hugo"

Did you mean this?
 server

Run 'hugo --help' for usage.

Suggestions are automatic based on every subcommand registered and use an implementation of Levenshtein distance [http://en.wikipedia.org/wiki/Levenshtein_distance]. Every registered command that matches a minimum distance of 2 (ignoring case) will be displayed as a suggestion.

If you need to disable suggestions or tweak the string distance in your command, use:

command.DisableSuggestions = true

or

command.SuggestionsMinimumDistance = 1

You can also explicitly set names for which a given command will be suggested using the SuggestFor attribute. This allows suggestions for strings that are not close in terms of string distance, but makes sense in your set of commands and for some which you don’t want aliases. Example:

$ kubectl remove
Error: unknown command "remove" for "kubectl"

Did you mean this?
 delete

Run 'kubectl help' for usage.

Generating documentation for your command

Cobra can generate documentation based on subcommands, flags, etc. in the following formats:

	Markdown

	ReStructured Text

	Man Page

Generating bash completions

Cobra can generate a bash-completion file. If you add more information to your command, these completions can be amazingly powerful and flexible. Read more about it in Bash Completions.

Generating zsh completions

Cobra can generate zsh-completion file. Read more about it in
Zsh Completions.

Contributing

	Fork it

	Download your fork to your PC (git clone https://github.com/your_username/cobra && cd cobra)

	Create your feature branch (git checkout -b my-new-feature)

	Make changes and add them (git add .)

	Commit your changes (git commit -m 'Add some feature')

	Push to the branch (git push origin my-new-feature)

	Create new pull request

License

Cobra is released under the Apache 2.0 license. See LICENSE.txt [https://github.com/spf13/cobra/blob/master/LICENSE.txt]

 Generating Bash Completions For Your Own cobra.Command

Generating Bash Completions For Your Own cobra.Command

If you are using the generator you can create a completion command by running

cobra add completion

Update the help text show how to install the bash_completion Linux show here Kubectl docs show mac options [https://kubernetes.io/docs/tasks/tools/install-kubectl/#enabling-shell-autocompletion]

Writing the shell script to stdout allows the most flexible use.

// completionCmd represents the completion command
var completionCmd = &cobra.Command{
	Use: "completion",
	Short: "Generates bash completion scripts",
	Long: `To load completion run

. <(bitbucket completion)

To configure your bash shell to load completions for each session add to your bashrc

~/.bashrc or ~/.profile
. <(bitbucket completion)
`,
	Run: func(cmd *cobra.Command, args []string) {
		rootCmd.GenBashCompletion(os.Stdout);
	},
}

Note: The cobra generator may include messages printed to stdout for example if the config file is loaded, this will break the auto complete script

Example from kubectl

Generating bash completions from a cobra command is incredibly easy. An actual program which does so for the kubernetes kubectl binary is as follows:

package main

import (
	"io/ioutil"
	"os"

	"k8s.io/kubernetes/pkg/kubectl/cmd"
	"k8s.io/kubernetes/pkg/kubectl/cmd/util"
)

func main() {
	kubectl := cmd.NewKubectlCommand(util.NewFactory(nil), os.Stdin, ioutil.Discard, ioutil.Discard)
	kubectl.GenBashCompletionFile("out.sh")
}

out.sh will get you completions of subcommands and flags. Copy it to /etc/bash_completion.d/ as described here [https://debian-administration.org/article/316/An_introduction_to_bash_completion_part_1] and reset your terminal to use autocompletion. If you make additional annotations to your code, you can get even more intelligent and flexible behavior.

Have the completions code complete your ‘nouns’

Static completion of nouns

This method allows you to provide a pre-defined list of completion choices for your nouns using the validArgs field.
For example, if you want kubectl get [tab][tab] to show a list of valid “nouns” you have to set them. Simplified code from kubectl get looks like:

validArgs []string = { "pod", "node", "service", "replicationcontroller" }

cmd := &cobra.Command{
	Use: "get [(-o|--output=)json|yaml|template|...] (RESOURCE [NAME] | RESOURCE/NAME ...)",
	Short: "Display one or many resources",
	Long: get_long,
	Example: get_example,
	Run: func(cmd *cobra.Command, args []string) {
		err := RunGet(f, out, cmd, args)
		util.CheckErr(err)
	},
	ValidArgs: validArgs,
}

Notice we put the “ValidArgs” on the “get” subcommand. Doing so will give results like

kubectl get [tab][tab]
node pod replicationcontroller service

Plural form and shortcuts for nouns

If your nouns have a number of aliases, you can define them alongside ValidArgs using ArgAliases:

argAliases []string = { "pods", "nodes", "services", "svc", "replicationcontrollers", "rc" }

cmd := &cobra.Command{
 ...
	ValidArgs: validArgs,
	ArgAliases: argAliases
}

The aliases are not shown to the user on tab completion, but they are accepted as valid nouns by
the completion algorithm if entered manually, e.g. in:

kubectl get rc [tab][tab]
backend frontend database

Note that without declaring rc as an alias, the completion algorithm would show the list of nouns
in this example again instead of the replication controllers.

Dynamic completion of nouns

In some cases it is not possible to provide a list of possible completions in advance. Instead, the list of completions must be determined at execution-time. Cobra provides two ways of defining such dynamic completion of nouns. Note that both these methods can be used along-side each other as long as they are not both used for the same command.

Note: Custom Completions written in Go will automatically work for other shell-completion scripts (e.g., Fish shell), while Custom Completions written in Bash will only work for Bash shell-completion. It is therefore recommended to use Custom Completions written in Go.

1. Custom completions of nouns written in Go

In a similar fashion as for static completions, you can use the ValidArgsFunction field to provide a Go function that Cobra will execute when it needs the list of completion choices for the nouns of a command. Note that either ValidArgs or ValidArgsFunction can be used for a single cobra command, but not both.
Simplified code from helm status looks like:

cmd := &cobra.Command{
	Use: "status RELEASE_NAME",
	Short: "Display the status of the named release",
	Long: status_long,
	RunE: func(cmd *cobra.Command, args []string) {
		RunGet(args[0])
	},
	ValidArgsFunction: func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
		if len(args) != 0 {
			return nil, cobra.ShellCompDirectiveNoFileComp
		}
		return getReleasesFromCluster(toComplete), cobra.ShellCompDirectiveNoFileComp
	},
}

Where getReleasesFromCluster() is a Go function that obtains the list of current Helm releases running on the Kubernetes cluster.
Notice we put the ValidArgsFunction on the status subcommand. Let’s assume the Helm releases on the cluster are: harbor, notary, rook and thanos then this dynamic completion will give results like

helm status [tab][tab]
harbor notary rook thanos

You may have noticed the use of cobra.ShellCompDirective. These directives are bit fields allowing to control some shell completion behaviors for your particular completion. You can combine them with the bit-or operator such as cobra.ShellCompDirectiveNoSpace | cobra.ShellCompDirectiveNoFileComp

// Indicates an error occurred and completions should be ignored.
ShellCompDirectiveError
// Indicates that the shell should not add a space after the completion,
// even if there is a single completion provided.
ShellCompDirectiveNoSpace
// Indicates that the shell should not provide file completion even when
// no completion is provided.
// This currently does not work for zsh or bash < 4
ShellCompDirectiveNoFileComp
// Indicates that the shell will perform its default behavior after completions
// have been provided (this implies !ShellCompDirectiveNoSpace && !ShellCompDirectiveNoFileComp).
ShellCompDirectiveDefault

When using the ValidArgsFunction, Cobra will call your registered function after having parsed all flags and arguments provided in the command-line. You therefore don’t need to do this parsing yourself. For example, when a user calls helm status --namespace my-rook-ns [tab][tab], Cobra will call your registered ValidArgsFunction after having parsed the --namespace flag, as it would have done when calling the RunE function.

Debugging

Cobra achieves dynamic completions written in Go through the use of a hidden command called by the completion script. To debug your Go completion code, you can call this hidden command directly:

helm __complete status har<ENTER>
harbor
:4
Completion ended with directive: ShellCompDirectiveNoFileComp # This is on stderr

Important: If the noun to complete is empty, you must pass an empty parameter to the __complete command:

helm __complete status ""<ENTER>
harbor
notary
rook
thanos
:4
Completion ended with directive: ShellCompDirectiveNoFileComp # This is on stderr

Calling the __complete command directly allows you to run the Go debugger to troubleshoot your code. You can also add printouts to your code; Cobra provides the following functions to use for printouts in Go completion code:

// Prints to the completion script debug file (if BASH_COMP_DEBUG_FILE
// is set to a file path) and optionally prints to stderr.
cobra.CompDebug(msg string, printToStdErr bool) {
cobra.CompDebugln(msg string, printToStdErr bool)

// Prints to the completion script debug file (if BASH_COMP_DEBUG_FILE
// is set to a file path) and to stderr.
cobra.CompError(msg string)
cobra.CompErrorln(msg string)

Important: You should not leave traces that print to stdout in your completion code as they will be interpreted as completion choices by the completion script. Instead, use the cobra-provided debugging traces functions mentioned above.

2. Custom completions of nouns written in Bash

This method allows you to inject bash functions into the completion script. Those bash functions are responsible for providing the completion choices for your own completions.

Some more actual code that works in kubernetes:

const (
 bash_completion_func = `__kubectl_parse_get()
{
 local kubectl_output out
 if kubectl_output=$(kubectl get --no-headers "$1" 2>/dev/null); then
 out=($(echo "${kubectl_output}" | awk '{print $1}'))
 COMPREPLY=($(compgen -W "${out[*]}" -- "$cur"))
 fi
}

__kubectl_get_resource()
{
 if [[${#nouns[@]} -eq 0]]; then
 return 1
 fi
 __kubectl_parse_get ${nouns[${#nouns[@]} -1]}
 if [[$? -eq 0]]; then
 return 0
 fi
}

__kubectl_custom_func() {
 case ${last_command} in
 kubectl_get | kubectl_describe | kubectl_delete | kubectl_stop)
 __kubectl_get_resource
 return
 ;;
 *)
 ;;
 esac
}
`)

And then I set that in my command definition:

cmds := &cobra.Command{
	Use: "kubectl",
	Short: "kubectl controls the Kubernetes cluster manager",
	Long: `kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlatform/kubernetes.`,
	Run: runHelp,
	BashCompletionFunction: bash_completion_func,
}

The BashCompletionFunction option is really only valid/useful on the root command. Doing the above will cause __kubectl_custom_func() (__<command-use>_custom_func()) to be called when the built in processor was unable to find a solution. In the case of kubernetes a valid command might look something like kubectl get pod [mypod]. If you type kubectl get pod [tab][tab] the __kubectl_customc_func() will run because the cobra.Command only understood “kubectl” and “get.” __kubectl_custom_func() will see that the cobra.Command is “kubectl_get” and will thus call another helper __kubectl_get_resource(). __kubectl_get_resource will look at the ‘nouns’ collected. In our example the only noun will be pod. So it will call __kubectl_parse_get pod. __kubectl_parse_get will actually call out to kubernetes and get any pods. It will then set COMPREPLY to valid pods!

Mark flags as required

Most of the time completions will only show subcommands. But if a flag is required to make a subcommand work, you probably want it to show up when the user types [tab][tab]. Marking a flag as ‘Required’ is incredibly easy.

cmd.MarkFlagRequired("pod")
cmd.MarkFlagRequired("container")

and you’ll get something like

kubectl exec [tab][tab][tab]
-c --container= -p --pod=

Specify valid filename extensions for flags that take a filename

In this example we use –filename= and expect to get a json or yaml file as the argument. To make this easier we annotate the –filename flag with valid filename extensions.

	annotations := []string{"json", "yaml", "yml"}
	annotation := make(map[string][]string)
	annotation[cobra.BashCompFilenameExt] = annotations

	flag := &pflag.Flag{
		Name: "filename",
		Shorthand: "f",
		Usage: usage,
		Value: value,
		DefValue: value.String(),
		Annotations: annotation,
	}
	cmd.Flags().AddFlag(flag)

Now when you run a command with this filename flag you’ll get something like

kubectl create -f
test/ example/ rpmbuild/
hello.yml test.json

So while there are many other files in the CWD it only shows me subdirs and those with valid extensions.

Specify custom flag completion

As for nouns, Cobra provides two ways of defining dynamic completion of flags. Note that both these methods can be used along-side each other as long as they are not both used for the same flag.

Note: Custom Completions written in Go will automatically work for other shell-completion scripts (e.g., Fish shell), while Custom Completions written in Bash will only work for Bash shell-completion. It is therefore recommended to use Custom Completions written in Go.

1. Custom completions of flags written in Go

To provide a Go function that Cobra will execute when it needs the list of completion choices for a flag, you must register the function in the following manner:

flagName := "output"
cmd.RegisterFlagCompletionFunc(flagName, func(cmd *cobra.Command, args []string, toComplete string) ([]string, cobra.ShellCompDirective) {
	return []string{"json", "table", "yaml"}, cobra.ShellCompDirectiveDefault
})

Notice that calling RegisterFlagCompletionFunc() is done through the command with which the flag is associated. In our example this dynamic completion will give results like so:

helm status --output [tab][tab]
json table yaml

Debugging

You can also easily debug your Go completion code for flags:

helm __complete status --output ""
json
table
yaml
:4
Completion ended with directive: ShellCompDirectiveNoFileComp # This is on stderr

Important: You should not leave traces that print to stdout in your completion code as they will be interpreted as completion choices by the completion script. Instead, use the cobra-provided debugging traces functions mentioned in the above section.

2. Custom completions of flags written in Bash

Alternatively, you can use bash code for flag custom completion. Similar to the filename
completion and filtering using cobra.BashCompFilenameExt, you can specify
a custom flag completion bash function with cobra.BashCompCustom:

	annotation := make(map[string][]string)
	annotation[cobra.BashCompCustom] = []string{"__kubectl_get_namespaces"}

	flag := &pflag.Flag{
		Name: "namespace",
		Usage: usage,
		Annotations: annotation,
	}
	cmd.Flags().AddFlag(flag)

In addition add the __kubectl_get_namespaces implementation in the BashCompletionFunction
value, e.g.:

__kubectl_get_namespaces()
{
 local template
 template="{{ range .items }}{{ .metadata.name }} {{ end }}"
 local kubectl_out
 if kubectl_out=$(kubectl get -o template --template="${template}" namespace 2>/dev/null); then
 COMPREPLY=($(compgen -W "${kubectl_out}[*]" -- "$cur"))
 fi
}

Using bash aliases for commands

You can also configure the bash aliases for the commands and they will also support completions.

alias aliasname=origcommand
complete -o default -F __start_origcommand aliasname

and now when you run `aliasname` completion will make
suggestions as it did for `origcommand`.

$) aliasname <tab><tab>
completion firstcommand secondcommand

 Generating Fish Completions for your own cobra.Command

Generating Fish Completions for your own cobra.Command

Cobra supports native Fish completions generated from the root cobra.Command. You can use the command.GenFishCompletion() or command.GenFishCompletionFile() functions. You must provide these functions with a parameter indicating if the completions should be annotated with a description; Cobra will provide the description automatically based on usage information. You can choose to make this option configurable by your users.

Limitations

	Custom completions implemented using the ValidArgsFunction and RegisterFlagCompletionFunc() are supported automatically but the ones implemented in Bash scripting are not.

 Generating PowerShell Completions For Your Own cobra.Command

Generating PowerShell Completions For Your Own cobra.Command

Cobra can generate PowerShell completion scripts. Users need PowerShell version 5.0 or above, which comes with Windows 10 and can be downloaded separately for Windows 7 or 8.1. They can then write the completions to a file and source this file from their PowerShell profile, which is referenced by the $Profile environment variable. See Get-Help about_Profiles for more info about PowerShell profiles.

What’s supported

	Completion for subcommands using their .Short description

	Completion for non-hidden flags using their .Name and .Shorthand

What’s not yet supported

	Command aliases

	Required, filename or custom flags (they will work like normal flags)

	Custom completion scripts

 Generating Zsh Completion for your cobra.Command

Generating Zsh Completion for your cobra.Command

Cobra supports native Zsh completion generated from the root cobra.Command.
The generated completion script should be put somewhere in your $fpath named
_<YOUR COMMAND>.

What’s Supported

	Completion for all non-hidden subcommands using their .Short description.

	Completion for all non-hidden flags using the following rules:

	Filename completion works by marking the flag with cmd.MarkFlagFilename...
family of commands.

	The requirement for argument to the flag is decided by the .NoOptDefVal
flag value - if it’s empty then completion will expect an argument.

	Flags of one of the various *Array and *Slice types supports multiple
specifications (with or without argument depending on the specific type).

	Completion of positional arguments using the following rules:

	Argument position for all options below starts at 1. If argument position
0 is requested it will raise an error.

	Use command.MarkZshCompPositionalArgumentFile to complete filenames. Glob
patterns (e.g. "*.log") are optional - if not specified it will offer to
complete all file types.

	Use command.MarkZshCompPositionalArgumentWords to offer specific words for
completion. At least one word is required.

	It’s possible to specify completion for some arguments and leave some
unspecified (e.g. offer words for second argument but nothing for first
argument). This will cause no completion for first argument but words
completion for second argument.

	If no argument completion was specified for 1st argument (but optionally was
specified for 2nd) and the command has ValidArgs it will be used as
completion options for 1st argument.

	Argument completions only offered for commands with no subcommands.

What’s not yet Supported

	Custom completion scripts are not supported yet (We should probably create zsh
specific one, doesn’t make sense to re-use the bash one as the functions will
be different).

	Whatever other feature you’re looking for and doesn’t exist :)

 Description

 [image: ../../../../_images/pflag.svg]Build Status [https://travis-ci.org/spf13/pflag]
[image: ../../../../_images/pflag1.svg]Go Report Card [https://goreportcard.com/report/github.com/spf13/pflag]
[image: ../../../../_images/pflag2.svg]GoDoc [https://godoc.org/github.com/spf13/pflag]

Description

pflag is a drop-in replacement for Go’s flag package, implementing
POSIX/GNU-style –flags.

pflag is compatible with the GNU extensions to the POSIX recommendations
for command-line options [http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html]. For a more precise description, see the
“Command-line flag syntax” section below.

pflag is available under the same style of BSD license as the Go language,
which can be found in the LICENSE file.

Installation

pflag is available using the standard go get command.

Install by running:

go get github.com/spf13/pflag

Run tests by running:

go test github.com/spf13/pflag

Usage

pflag is a drop-in replacement of Go’s native flag package. If you import
pflag under the name “flag” then all code should continue to function
with no changes.

import flag "github.com/spf13/pflag"

There is one exception to this: if you directly instantiate the Flag struct
there is one more field “Shorthand” that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.

Define flags using flag.String(), Bool(), Int(), etc.

This declares an integer flag, -flagname, stored in the pointer ip, with type *int.

var ip *int = flag.Int("flagname", 1234, "help message for flagname")

If you like, you can bind the flag to a variable using the Var() functions.

var flagvar int
func init() {
 flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}

Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by

flag.Var(&flagVal, "name", "help message for flagname")

For such flags, the default value is just the initial value of the variable.

After all flags are defined, call

flag.Parse()

to parse the command line into the defined flags.

Flags may then be used directly. If you’re using the flags themselves,
they are all pointers; if you bind to variables, they’re values.

fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)

There are helpers function to get values later if you have the FlagSet but
it was difficult to keep up with all of the flag pointers in your code.
If you have a pflag.FlagSet with a flag called ‘flagname’ of type int you
can use GetInt() to get the int value. But notice that ‘flagname’ must exist
and it must be an int. GetString(”flagname”) will fail.

i, err := flagset.GetInt("flagname")

After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.

The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
‘P’ to the name of any function that defines a flag.

var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
	flag.BoolVarP(&flagvar, "boolname", "b", true, "help message")
}
flag.VarP(&flagVal, "varname", "v", "help message")

Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.

The default set of command-line flags is controlled by
top-level functions. The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.

Setting no option default values for flags

After you create a flag it is possible to set the pflag.NoOptDefVal for
the given flag. Doing this changes the meaning of the flag slightly. If
a flag has a NoOptDefVal and the flag is set on the command line without
an option the flag will be set to the NoOptDefVal. For example given:

var ip = flag.IntP("flagname", "f", 1234, "help message")
flag.Lookup("flagname").NoOptDefVal = "4321"

Would result in something like

Parsed Arguments	Resulting Value
————-	————-
–flagname=1357	ip=1357
–flagname	ip=4321
[nothing]	ip=1234

Command line flag syntax

--flag // boolean flags, or flags with no option default values
--flag x // only on flags without a default value
--flag=x

Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags
or a flag with a default value

// boolean or flags where the 'no option default value' is set
-f
-f=true
-abc
but
-b true is INVALID

// non-boolean and flags without a 'no option default value'
-n 1234
-n=1234
-n1234

// mixed
-abcs "hello"
-absd="hello"
-abcs1234

Flag parsing stops after the terminator “–”. Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.

Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.

Mutating or “Normalizing” Flag names

It is possible to set a custom flag name ‘normalization function.’ It allows flag names to be mutated both when created in the code and when used on the command line to some ‘normalized’ form. The ‘normalized’ form is used for comparison. Two examples of using the custom normalization func follow.

Example #1: You want -, _, and . in flags to compare the same. aka –my-flag == –my_flag == –my.flag

func wordSepNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
	from := []string{"-", "_"}
	to := "."
	for _, sep := range from {
		name = strings.Replace(name, sep, to, -1)
	}
	return pflag.NormalizedName(name)
}

myFlagSet.SetNormalizeFunc(wordSepNormalizeFunc)

Example #2: You want to alias two flags. aka –old-flag-name == –new-flag-name

func aliasNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
	switch name {
	case "old-flag-name":
		name = "new-flag-name"
		break
	}
	return pflag.NormalizedName(name)
}

myFlagSet.SetNormalizeFunc(aliasNormalizeFunc)

Deprecating a flag or its shorthand

It is possible to deprecate a flag, or just its shorthand. Deprecating a flag/shorthand hides it from help text and prints a usage message when the deprecated flag/shorthand is used.

Example #1: You want to deprecate a flag named “badflag” as well as inform the users what flag they should use instead.

// deprecate a flag by specifying its name and a usage message
flags.MarkDeprecated("badflag", "please use --good-flag instead")

This hides “badflag” from help text, and prints Flag --badflag has been deprecated, please use --good-flag instead when “badflag” is used.

Example #2: You want to keep a flag name “noshorthandflag” but deprecate its shortname “n”.

// deprecate a flag shorthand by specifying its flag name and a usage message
flags.MarkShorthandDeprecated("noshorthandflag", "please use --noshorthandflag only")

This hides the shortname “n” from help text, and prints Flag shorthand -n has been deprecated, please use --noshorthandflag only when the shorthand “n” is used.

Note that usage message is essential here, and it should not be empty.

Hidden flags

It is possible to mark a flag as hidden, meaning it will still function as normal, however will not show up in usage/help text.

Example: You have a flag named “secretFlag” that you need for internal use only and don’t want it showing up in help text, or for its usage text to be available.

// hide a flag by specifying its name
flags.MarkHidden("secretFlag")

Disable sorting of flags

pflag allows you to disable sorting of flags for help and usage message.

Example:

flags.BoolP("verbose", "v", false, "verbose output")
flags.String("coolflag", "yeaah", "it's really cool flag")
flags.Int("usefulflag", 777, "sometimes it's very useful")
flags.SortFlags = false
flags.PrintDefaults()

Output:

 -v, --verbose verbose output
 --coolflag string it's really cool flag (default "yeaah")
 --usefulflag int sometimes it's very useful (default 777)

Supporting Go flags when using pflag

In order to support flags defined using Go’s flag package, they must be added to the pflag flagset. This is usually necessary
to support flags defined by third-party dependencies (e.g. golang/glog).

Example: You want to add the Go flags to the CommandLine flagset

import (
	goflag "flag"
	flag "github.com/spf13/pflag"
)

var ip *int = flag.Int("flagname", 1234, "help message for flagname")

func main() {
	flag.CommandLine.AddGoFlagSet(goflag.CommandLine)
	flag.Parse()
}

More info

You can see the full reference documentation of the pflag package
at godoc.org [http://godoc.org/github.com/spf13/pflag], or through go’s standard documentation system by
running godoc -http=:6060 and browsing to
http://localhost:6060/pkg/github.com/spf13/pflag after
installation.

 Building sys/unix

Building sys/unix

The sys/unix package provides access to the raw system call interface of the
underlying operating system. See: https://godoc.org/golang.org/x/sys/unix

Porting Go to a new architecture/OS combination or adding syscalls, types, or
constants to an existing architecture/OS pair requires some manual effort;
however, there are tools that automate much of the process.

Build Systems

There are currently two ways we generate the necessary files. We are currently
migrating the build system to use containers so the builds are reproducible.
This is being done on an OS-by-OS basis. Please update this documentation as
components of the build system change.

Old Build System (currently for GOOS != "linux")

The old build system generates the Go files based on the C header files
present on your system. This means that files
for a given GOOS/GOARCH pair must be generated on a system with that OS and
architecture. This also means that the generated code can differ from system
to system, based on differences in the header files.

To avoid this, if you are using the old build system, only generate the Go
files on an installation with unmodified header files. It is also important to
keep track of which version of the OS the files were generated from (ex.
Darwin 14 vs Darwin 15). This makes it easier to track the progress of changes
and have each OS upgrade correspond to a single change.

To build the files for your current OS and architecture, make sure GOOS and
GOARCH are set correctly and run mkall.sh. This will generate the files for
your specific system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, go

New Build System (currently for GOOS == "linux")

The new build system uses a Docker container to generate the go files directly
from source checkouts of the kernel and various system libraries. This means
that on any platform that supports Docker, all the files using the new build
system can be generated at once, and generated files will not change based on
what the person running the scripts has installed on their computer.

The OS specific files for the new build system are located in the ${GOOS}
directory, and the build is coordinated by the ${GOOS}/mkall.go program. When
the kernel or system library updates, modify the Dockerfile at
${GOOS}/Dockerfile to checkout the new release of the source.

To build all the files under the new build system, you must be on an amd64/Linux
system and have your GOOS and GOARCH set accordingly. Running mkall.sh will
then generate all of the files for all of the GOOS/GOARCH pairs in the new build
system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, go, docker

Component files

This section describes the various files used in the code generation process.
It also contains instructions on how to modify these files to add a new
architecture/OS or to add additional syscalls, types, or constants. Note that
if you are using the new build system, the scripts/programs cannot be called normally.
They must be called from within the docker container.

asm files

The hand-written assembly file at asm_${GOOS}_${GOARCH}.s implements system
call dispatch. There are three entry points:

 func Syscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
 func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr)
 func RawSyscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)

The first and second are the standard ones; they differ only in how many
arguments can be passed to the kernel. The third is for low-level use by the
ForkExec wrapper. Unlike the first two, it does not call into the scheduler to
let it know that a system call is running.

When porting Go to an new architecture/OS, this file must be implemented for
each GOOS/GOARCH pair.

mksysnum

Mksysnum is a Go program located at ${GOOS}/mksysnum.go (or mksysnum_${GOOS}.go
for the old system). This program takes in a list of header files containing the
syscall number declarations and parses them to produce the corresponding list of
Go numeric constants. See zsysnum_${GOOS}_${GOARCH}.go for the generated
constants.

Adding new syscall numbers is mostly done by running the build on a sufficiently
new installation of the target OS (or updating the source checkouts for the
new build system). However, depending on the OS, you make need to update the
parsing in mksysnum.

mksyscall.go

The syscall.go, syscall_${GOOS}.go, syscall_${GOOS}_${GOARCH}.go are
hand-written Go files which implement system calls (for unix, the specific OS,
or the specific OS/Architecture pair respectively) that need special handling
and list //sys comments giving prototypes for ones that can be generated.

The mksyscall.go program takes the //sys and //sysnb comments and converts
them into syscalls. This requires the name of the prototype in the comment to
match a syscall number in the zsysnum_${GOOS}_${GOARCH}.go file. The function
prototype can be exported (capitalized) or not.

Adding a new syscall often just requires adding a new //sys function prototype
with the desired arguments and a capitalized name so it is exported. However, if
you want the interface to the syscall to be different, often one will make an
unexported //sys prototype, an then write a custom wrapper in
syscall_${GOOS}.go.

types files

For each OS, there is a hand-written Go file at ${GOOS}/types.go (or
types_${GOOS}.go on the old system). This file includes standard C headers and
creates Go type aliases to the corresponding C types. The file is then fed
through godef to get the Go compatible definitions. Finally, the generated code
is fed though mkpost.go to format the code correctly and remove any hidden or
private identifiers. This cleaned-up code is written to
ztypes_${GOOS}_${GOARCH}.go.

The hardest part about preparing this file is figuring out which headers to
include and which symbols need to be #defined to get the actual data
structures that pass through to the kernel system calls. Some C libraries
preset alternate versions for binary compatibility and translate them on the
way in and out of system calls, but there is almost always a #define that can
get the real ones.
See types_darwin.go and linux/types.go for examples.

To add a new type, add in the necessary include statement at the top of the
file (if it is not already there) and add in a type alias line. Note that if
your type is significantly different on different architectures, you may need
some #if/#elif macros in your include statements.

mkerrors.sh

This script is used to generate the system’s various constants. This doesn’t
just include the error numbers and error strings, but also the signal numbers
an a wide variety of miscellaneous constants. The constants come from the list
of include files in the includes_${uname} variable. A regex then picks out
the desired #define statements, and generates the corresponding Go constants.
The error numbers and strings are generated from #include <errno.h>, and the
signal numbers and strings are generated from #include <signal.h>. All of
these constants are written to zerrors_${GOOS}_${GOARCH}.go via a C program,
_errors.c, which prints out all the constants.

To add a constant, add the header that includes it to the appropriate variable.
Then, edit the regex (if necessary) to match the desired constant. Avoid making
the regex too broad to avoid matching unintended constants.

mkmerge.go

This program is used to extract duplicate const, func, and type declarations
from the generated architecture-specific files listed below, and merge these
into a common file for each OS.

The merge is performed in the following steps:

	Construct the set of common code that is idential in all architecture-specific files.

	Write this common code to the merged file.

	Remove the common code from all architecture-specific files.

Generated files

zerror_${GOOS}_${GOARCH}.go

A file containing all of the system’s generated error numbers, error strings,
signal numbers, and constants. Generated by mkerrors.sh (see above).

zsyscall_${GOOS}_${GOARCH}.go

A file containing all the generated syscalls for a specific GOOS and GOARCH.
Generated by mksyscall.go (see above).

zsysnum_${GOOS}_${GOARCH}.go

A list of numeric constants for all the syscall number of the specific GOOS
and GOARCH. Generated by mksysnum (see above).

ztypes_${GOOS}_${GOARCH}.go

A file containing Go types for passing into (or returning from) syscalls.
Generated by godefs and the types file (see above).

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_images/c1JI0lA.png
Color: an ANSI Color package for Go

red red
green green
yellow yellow
blue blue
magenta magenta
cyan cyan
white white

_static/up.png

_static/plus.png

_images/a5889e7aed127aa5272543b0c4840ceb9029fa15.png
7 cobra

_images/bad.png
c: ¥dev¥zo¥src¥aithub. con¥mat tn¥eo-colorable¥_example>zo run main. go
[<[34mINFO<LOmL0000] succeeded

[<[33mARNELOmL0000] ot correct

[<[31mERROCLOML0000] something error

[<[31nFATALON0000] panic
lexit status 1

1 ¥dev¥zo¥src¥ai thub. con¥mat tn¥eo-colorable¥_examp|e>

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/PY7qMwd.png
INFOL@000] A group of walrus emerges from the ocean animal=walrus size=10

WARN[L000@] The group’'s number increased tremendously! numbe